首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Claudins, most of which end in valine at their COOH termini, constitute tight junction (TJ) strands, suggesting that TJ strands strongly attract PDZ-containing proteins. Indeed, ZO-1, -2, and -3, each of which contains three PDZ domains, were shown to directly bind to claudins. Using the yeast two-hybrid system, we identified ZO-1 and MUPP1 (multi-PDZ domain protein 1) as binding partners for the COOH terminus of claudin-1. MUPP1 has been identified as a protein that contains 13 PDZ domains, but it has not been well characterized. In vitro binding assays with recombinant MUPP1 confirmed the interaction between MUPP1 and claudin-1 and identified PDZ10 as the responsible domain for this interaction. A polyclonal antibody specific for MUPP1 was then generated. Immunofluorescence confocal microscopy as well as immunoelectron microscopy with this antibody revealed that in polarized epithelial cells MUPP1 was exclusively concentrated at TJs. Furthermore, in vitro binding and transfection experiments showed that junctional adhesion molecule, another TJ adhesion molecule, also bound to the PDZ9 domain of MUPP1. These findings suggested that MUPP1 is concentrated at TJs in epithelial cells through its binding to claudin and junctional adhesion molecule and that it may function as a multivalent scaffold protein that recruits various proteins to TJs.  相似文献   

2.
Sjögren's syndrome (SS) is an inflammatory autoimmune disease that causes hyposecretion in salivary glands. Endothelial tight junctions (TJs) play crucial roles in salivation and barrier function of blood vessels. However, whether the alteration of endothelial TJs were involved in pathogenesis of SS was still unknown. Here, the ultrastructure and function of endothelial TJs in submandibular glands (SMGs) were detected by transmission electron microscopy and in vivo paracellular permeability assay in different aged NOD mouse model for SS. CFSE-labeled lymphocytes were injected into tail vein to trace the infiltration, while claudin-5 expression and distribution were detected by immunofluorescence, qRT-PCR, and western blot. Results showed that the stimulated salivary flow rate was gradually decreased and lymphocytic infiltration was found as age increased in 12- and 21-week-old NOD mice, but not 7-week-old NOD mice. Blood vessels were dilated, while endothelial TJ width and paracellular tracer transport were increased in 12-week-old NOD mice. Moreover, the injected CFSE-labeled lymphocytes were observed in SMGs of 12-week-old NOD mice. Claudin-5 level was increased and relocalized from the apical portion of neighboring endothelial cells to lateral membranes and cytoplasm in 12-week-old NOD mice. Additionally, the alteration of claudin-5 expression and distribution was further confirmed in labial salivary glands and bilateral parotid glands from SS patients. In cultured human microvessel endothelial cell line (HMEC-1), IFN-γ stimulation significantly increased claudin-5 expression. Taken together, we identified that the endothelial TJ barrier was disrupted and contributed to the development of salivary hyposecretion and lymphocytic infiltration in SS.  相似文献   

3.
Infection of intestinal epithelial cells with enteropathogenic Escherichia coli (EPEC) disrupts tight junction (TJ) architecture and barrier function. The aim of this study was to determine the impact of EPEC on TJ protein interactions and localization. Human intestinal epithelial cells (T84) were infected for 1, 3 or 6 h with EPEC. To probe the TJ protein-protein interactions, co-immunoprecipitations were performed. The associations between ZO-1, occludin and claudin-1 progressively decreased after infection. Corresponding morphological changes were analysed by immunofluorescence confocal microscopy. Tight junction proteins progressively lost their apically restricted localization. Freeze-fracture electron microscopy revealed the appearance of aberrant strands throughout the lateral membrane that contained claudin-1 and occludin as determined by immunogold labelling. These structural alterations were accompanied by a loss of barrier function. Mutation of the gene encoding EspF, important in the disruption of TJs by EPEC, prevented the disruption of TJs. Tight junction structure normalized following eradication of EPEC with gentamicin and overnight recovery. This is the first demonstration that a microbial pathogen can cause aberrant TJ strands in the lateral membrane of host cells. We speculate that the disruption of integral and cytoplasmic TJ protein interactions following EPEC infection allows TJ strands to form or diffuse into the lateral plasma membrane.  相似文献   

4.
Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.  相似文献   

5.
Members of the newly identified claudin gene family constitute tight junction (TJ) strands, which play a pivotal role in compartmentalization in multicellular organisms. We identified oligodendrocyte-specific protein (OSP) as claudin-11, a new claudin family member, due to its sequence similarity to claudins as well as its ability to form TJ strands in transfected fibroblasts. Claudin-11/OSP mRNA was expressed in the brain and testis. Immunofluorescence microscopy with anti-claudin-11/OSP polyclonal antibody (pAb) and anti-neurofilament mAb revealed that in the brain claudin-11/OSP-positive linear structures run in a gentle spiral around neurofilament-positive axons. At the electron microscopic level, these linear structures were identified as the so-called interlamellar strands in myelin sheaths of oligodendrocytes. In testis, well-developed TJ strands of Sertoli cells were specifically labeled with anti-claudin-11/OSP pAb both at immunofluorescence and electron microscopic levels. These findings indicated that the interlamellar strands of oligodendrocyte myelin sheaths can be regarded as a variant of TJ strands found in many other epithelial cells, and that these strands share a specific claudin species, claudin-11/OSP, with those in Sertoli cells to create and maintain the repeated compartments around axons by oligodendrocytes.  相似文献   

6.
In tight junctions (TJs), TJ strands are associated laterally with those of adjacent cells to form paired strands to eliminate the extracellular space. Claudin-1 and -2, integral membrane proteins of TJs, reconstitute paired TJ strands when transfected into L fibroblasts. Claudins comprise a multigene family and more than two distinct claudins are coexpressed in single cells, raising the questions of whether heterogeneous claudins form heteromeric TJ strands and whether claudins interact between each of the paired strands in a heterophilic manner. To answer these questions, we cotransfected two of claudin-1, -2, and -3 into L cells, and detected their coconcentration at cell-cell borders as elaborate networks. Immunoreplica EM confirmed that distinct claudins were coincorporated into individual TJ strands. Next, two L transfectants singly expressing claudin-1, -2, or -3 were cocultured and we found that claudin-3 strands laterally associated with claudin-1 and -2 strands to form paired strands, whereas claudin-1 strands did not interact with claudin-2 strands. We concluded that distinct species of claudins can interact within and between TJ strands, except in some combinations. This mode of assembly of claudins could increase the diversity of the structure and functions of TJ strands.  相似文献   

7.
At tight junctions (TJs), claudins with four transmembrane domains are incorporated into TJ strands. Junctional adhesion molecule (JAM), which belongs to the immunoglobulin superfamily, is also localized at TJs, but it remains unclear how JAM is integrated into TJs. Immunoreplica electron microscopy revealed that JAM showed an intimate spatial relationship with TJ strands in epithelial cells. In L fibroblasts expressing exogenous JAM, JAM was concentrated at cell-cell adhesion sites, where there were no strand-like structures, but rather characteristic membrane domains free of intramembranous particles were detected. These domains were specifically labeled with anti-JAM polyclonal antibody, suggesting that JAM forms planar aggregates through their lateral self-association. Immunofluorescence microscopy and in vitro binding assays revealed that ZO-1 directly binds to the COOH termini of claudins and JAM at its PDZ1 and PDZ3 domains, respectively. Furthermore, another PDZ-containing polarity-related protein, PAR-3, was directly bound to the COOH terminus of JAM, but not to that of claudins. These findings led to a molecular architectural model for TJs: small aggregates of JAM are tethered to claudin-based strands through ZO-1, and these JAM aggregates recruit PAR-3 to TJs. We also discuss the importance of this model from the perspective of the general molecular mechanisms behind the recruitment of PAR proteins to plasma membranes.  相似文献   

8.
There are two strains of MDCK cells, MDCK I and II. MDCK I cells show much higher transepithelial electric resistance (TER) than MDCK II cells, although they bear similar numbers of tight junction (TJ) strands. We examined the expression pattern of claudins, the major components of TJ strands, in these cells: claudin-1 and -4 were expressed both in MDCK I and II cells, whereas the expression of claudin-2 was restricted to MDCK II cells. The dog claudin-2 cDNA was then introduced into MDCK I cells to mimic the claudin expression pattern of MDCK II cells. Interestingly, the TER values of MDCK I clones stably expressing claudin-2 (dCL2-MDCK I) fell to the levels of MDCK II cells (>20-fold decrease). In contrast, when dog claudin-3 was introduced into MDCK I cells, no change was detected in their TER. Similar results were obtained in mouse epithelial cells, Eph4. Morphometric analyses identified no significant differences in the density of TJs or in the number of TJ strands between dCL2-MDCK I and control MDCK I cells. These findings indicated that the addition of claudin-2 markedly decreased the tightness of individual claudin-1/4-based TJ strands, leading to the speculation that the combination and mixing ratios of claudin species determine the barrier properties of individual TJ strands.  相似文献   

9.
Tight-junction strands, which are organized into the beltlike cell-cell adhesive structure called the zonula occludens (TJ), create the paracellular permselective barrier in epithelial cells. The TJ is constructed on the basis of the zonula adherens (AJ) by polymerized claudins in a process mediated by ZO-1/2, but whether the 24 individual claudin family members play different roles at the TJ is unclear. Here we established a cell system for examining the polymerization of individual claudins in the presence of ZO-1/2 using an epithelial-like cell line, SF7, which lacked endogenous TJs and expressed no claudin but claudin-12 in immunofluorescence and real-time PCR assays. In stable SF7-derived lines, exogenous claudin-7, -14, or -19, but no other claudins, individually reconstituted TJs, each with a distinct TJ-strand pattern, as revealed by freeze-fracture analyses. Fluorescence recovery after photobleaching (FRAP) analyses of the claudin dynamics in these and other epithelial cells suggested that slow FRAP-recovery dynamics of claudins play a critical role in regulating their polymerization around AJs, which are loosely coupled with ZO-1/2, to form TJs. Furthermore, the distinct claudin stabilities in different cell types may help to understand how TJs regulate paracellular permeability by altering the paracellular flux and the paracellular ion permeability.  相似文献   

10.
To investigate the formation mechanism of tight junctions (TJs), we constructed three claudin-1 mutants which varied in their COOH-termini and expressed them in MDCK cells under the control of doxycycline. The differences between these constructs are that a putative ZO-1 binding sequence (KDYV) at the COOH-terminus of claudin-1 was deleted (DeltaCmyc) or present (1CLmyc and DeltaCmycYV), or that a myc-epitope was added at the COOH-terminus (1CLmyc and DeltaCmyc) or inserted just before the KDYV sequence (DeltaCmycYV). All three constructs caused the formation of aberrant TJ strands along the lateral plasma membranes. However, when their expression levels were reduced by adding 0.2 ng/ml doxycycline, they were located at apical TJs and colocalized with ZO-1, even in the KDYV-deleted construct. These results suggest that, although the addition of the myc-epitope at or near the COOH-terminus of claudin-1 interfered with the binding to ZO-1 and induced aberrant TJ strand formation, endogenous claudins which could bind to ZO-1 might recruit these deformed claudin-1s expressed at a low level to apical TJs. A calcium switch assay revealed that claudin-1 was transported to cadherin-based cell-cell contacts where ZO-1 had already accumulated, and was then concentrated at apical TJs together with ZO-1. Crosslinking between claudin-1 and the perijunctional actin ring through ZO-1 may be necessary for TJ strands to be localized or retained at apical TJs.  相似文献   

11.
Recent studies suggest that the morphological and physiological properties of tight junctions (TJs) are determined by the combination and mixing ratios of claudin isoforms. In this study, we tried to characterize mouse cell lines by expression of claudin isoforms to use for studying epithelial TJs by overexpression or suppression of claudin(s) in the cells and found that claudin-2 was expressed in a few mouse rectum carcinoma cells, CMT93 cells. We have isolated CMT93-I and -II cells from CMT93 cells by immunohistochemical screening for the presence or absence of claudin-2 expression. Immunofluorescence and RT-PCR analyses showed that expression of claudin-4, -6, -7 and -12 was detected in both cell lines, but claudin-2 was only expressed in CMT93-II cells. There were no differences in paracellular permeability between CMT93-I and -II cells examined by 4 kDa FITC-dextran and fluorescein sodium, or in the number of TJ strands examined by freeze-fracture electron microscopy. However, the transepithelial electrical resistance (TER) of CMT93-I cells was approximately 6.5 times higher than that of CMT93-II cells, suggesting that expression of claudin-2 may be related to decreased TER. Comparative examinations of CMT93-I and -II cells provide a clue how the combination and mixing ratios of claudin isoforms regulate the paracellular permeability.  相似文献   

12.
Claudin proteins belong to a large family of transmembrane proteins essential to the formation and maintenance of tight junctions (TJs). In ovarian cancer, TJ protein claudin-4 is frequently overexpressed and may have roles in survival and invasion, but the molecular mechanisms underlying its regulation are poorly understood. In this report, we show that claudin-4 can be phosphorylated by protein kinase C (PKC) at Thr189 and Ser194 in ovarian cancer cells and overexpression of a claudin-4 mutant protein mimicking the phosphorylated state results in the disruption of the barrier function. Furthermore, upon phorbol ester-mediated PKC activation of OVCA433 cells, TJ strength is decreased and claudin-4 localization is altered. Analyses using PKC inhibitors and siRNA suggest that PKCepsilon, an isoform typically expressed in ovarian cancer cells, may be important in the TPA-mediated claudin-4 phosphorylation and weakening of the TJs. Furthermore, immunofluorescence studies showed that claudin-4 and PKCepsilon are co-localized at the TJs in these cells. The modulation of claudin-4 activity by PKCepsilon may not only provide a mechanism for disrupting TJ function in ovarian cancer, but may also be important in the regulation of TJ function in normal epithelial cells.  相似文献   

13.
Claudins are one of the transmembrane proteins found at tight junctions (TJs); they constitute the backbone of TJ strands and comprise a multigene family. Claudins share a YV sequence at the COOH-termini, which is considered to be a ZO-binding motif. Overexpression of claudin-15 (15CL) or claudin-15 tagged with enhanced green fluorescent protein at the NH2-terminus (EGFP-15CL) induced aberrant strands in MDCK II cells, even though claudin-15 has the ZO-binding motif. Morphometric analysis by freeze-fracture electron microscopy revealed that the mean number of apical TJ strands increased by 47% in EGFP-1CL-expressing cells, 21% in EGFP-15CL-expressing cells, and 28% in 15CL-expressing cells. The number of free-ended apical strands increased remarkably in EGFP-15CL- and 15CL-expressing cells, but not in EGFP-1CL-expressing cells. When MDCK cells expressing EGFP-1CL, EGFP-15CL or 15CL were co-cultured with parent MDCK cells, which express claudin-1 but not claudin-15, EGFP-15CL and 15CL could not be concentrated at the apical junctional region between the heterotypic cells, though EGFP-1CL could. These results suggest that not only binding to ZO-1, but also head-to-head compatibility between claudin species, is involved in organizing claudin proteins at the apical junctional region.  相似文献   

14.
Tight junctions (TJs) are an important component of the blood-brain barrier, and claudin-1, -3, -5 and -12 have been reported to be localized at the TJs of brain capillary endothelial cells (BCECs). To understand the contribution of each claudin subtype to TJ formation, we have measured the mRNA expression levels of claudin subtypes (claudin-1 to -23) and other relevant proteins in highly purified mouse BCECs. Mouse BCECs were labeled with anti-platelet endothelial cellular adhesion molecule-1 antibody and 2.3 × 106 cells were isolated from 15 mice by magnetic cell sorting. Expression of Tie-2, Mdr1a and GLUT1 mRNAs was concentrated in the isolated fraction, and contamination with neurons and astrocytes was substantially less than in the brain capillary fraction prepared by the standard glass-beads column method. Expression of occludin, junctional adhesion molecule and endothelial-specific adhesion molecule mRNAs was concentrated in the isolated fraction, suggesting that the corresponding proteins are selectively expressed in mouse BCECs. Among claudin subtypes, claudin-5 was most highly expressed, at a level which was at least 593-fold greater that that of claudin-1, -3 or -12. Expression of mRNAs of claudin-8, -10, -15, -17, -19, -20, -22 or -23 was also concentrated in the isolated fraction, suggesting these subtypes are expressed in mouse BCECs. The levels of claudin-10 and -22 mRNAs were comparable with that of occludin mRNA. These results indicate that claudin-5 is the most abundant claudin subtype in mouse BCECs, and are consistent with the idea that claudin-10 and -22 are involved in TJ formation at the blood-brain barrier in cooperation with claudin-5.  相似文献   

15.
Tight junction (TJ)-like structures have been reported in Schwann cells, but their molecular composition and physiological function remain elusive. We found that claudin-19, a novel member of the claudin family (TJ adhesion molecules in epithelia), constituted these structures. Claudin-19-deficient mice were generated, and they exhibited behavioral abnormalities that could be attributed to peripheral nervous system deficits. Electrophysiological analyses showed that the claudin-19 deficiency affected the nerve conduction of peripheral myelinated fibers. Interestingly, the overall morphology of Schwann cells lacking claudin-19 expression appeared to be normal not only in the internodal region but also at the node of Ranvier, except that TJs completely disappeared, at least from the outer/inner mesaxons. These findings have indicated that, similar to epithelial cells, Schwann cells also bear claudin-based TJs, and they have also suggested that these TJs are not involved in the polarized morphogenesis but are involved in the electrophysiological "sealing" function of Schwann cells.  相似文献   

16.
ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell-cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.  相似文献   

17.
Tight junctions (TJs) are composed of a claudin-based anastomosing network of TJ strands at which plasma membranes of adjacent epithelial cells are closely attached to regulate the paracellular permeability. Although the TJ proteins occludin and tricellulin have been known to be incorporated in the TJ strand network, their molecular functions remain unknown. Here, we established tricellulin/occludin-double knockout (dKO) MDCK II cells using a genome editing technique and evaluated the structure and barrier function of these cells. In freeze-fracture replica electron microscopy, the TJ strands of tricellulin/occludin-dKO cells had fewer branches and were less anastomosed compared with the controls. The paracellular permeability of ions and small tracers was increased in the dKO cells. A single KO of tricellulin or occludin had limited effects on the morphology and permeability of TJs. Mathematical simulation using a simplified TJ strand network model predicted that reduced cross-links in TJ strands lead to increased permeability of ions and small macromolecules. Furthermore, overexpression of occludin increased the complexity of TJ strand network and strengthened barrier function. Taken together, our data suggest that tricellulin and occludin mediate the formation and/or stabilization of TJ-strand branching points and contribute to the maintenance of epithelial barrier integrity.  相似文献   

18.
ZO-2, a member of the MAGUK family, was thought to be specific for tight junctions (TJs) in contrast to ZO-1, another MAGUK family member, which is localized at TJs and adherens junctions (AJs) in epithelial and nonepithelial cells, respectively. Mouse ZO-2 cDNA was isolated, and a specific polyclonal antibody was generated using corresponding synthetic peptides as antigens. Immunofluorescence microscopy with this polyclonal antibody revealed that, similarly to ZO-1, in addition to TJs in epithelial cells, ZO-2 was also concentrated at AJs in nonepithelial cells such as fibroblasts and cardiac muscle cells lacking TJs. When NH2-terminal dlg-like and COOH-terminal non-dlg-like domains of ZO-2 (N-ZO-2 and C-ZO-2, respectively) were separately introduced into cultured cells, N-ZO-2 was colocalized with endogenous ZO-1/ZO-2, i.e. at TJs in epithelial cells and at AJs in non-epithelial cells, whereas C-ZO-2 was distributed along actin filaments. Consistently, occludin as well as alpha catenin directly bound to N-ZO-2 as well as the NH2-terminal dlg-like portion of ZO-1 (N-ZO-1) in vitro. Furthermore, immunoprecipitation experiments revealed that the second PDZ domain of ZO-2 was directly associated with N-ZO-1. These findings indicated that ZO-2 forms a complex with ZO-1/occludin or ZO-1/alpha catenin to establish TJ or AJ domains, respectively.  相似文献   

19.
In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins -catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration  相似文献   

20.
Vascular leakage pathologies such as pleural effusion and hemorrhage are hallmarks of anthrax pathogenesis. We previously reported that anthrax lethal toxin (LT), the major virulence factor of anthrax, reduces barrier function in cultured primary human microvascular endothelial cells. Here, we show that LT-induced barrier dysfunction is accompanied by the reduced expression of the endothelial tight junction (TJ) protein claudin-5 but no change in the expression of other TJ components occludin, ZO-1, ZO-2, or the adherens junction (AJ) protein VE-cadherin. The downregulation of claudin-5 correlated temporally and dose-dependently with the reduction of transendothelial electrical resistance. LT-induced loss of claudin-5 was independent of cell death and preceded the appearance of actin stress fibers and altered AJ morphology. Pharmacological inhibition of MEK-1/2, two kinases that are proteolytically inactivated by LT, showed a similar reduction in claudin-5 expression. We found that LT reduced claudin-5 mRNA levels but did not accelerate the rate of claudin-5 degradation. Mice challenged with LT also showed significant reduction in claudin-5 expression. Together, these findings support a possible role for LT disruption of endothelial TJs in the vascular leakage pathologies of anthrax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号