首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caffeine and length dependence of staircase potentiation in skeletal muscle   总被引:1,自引:0,他引:1  
Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.  相似文献   

2.
When muscle is elongated, there is a length dependence of twitch potentiation and an increased Ca(2+) sensitivity of the myofilaments. Changes in the charge potential of myofilaments, induced by a decrease in pH, are known to abolish the length dependence of Ca(2+) sensitivity. This study was aimed at testing the hypothesis that a decrease in pH, and the concomitant loss of length dependence of Ca(2+) sensitivity, depresses the length dependence of staircase potentiation. In vitro, isometric twitch contractions of fiber bundles dissected from the mouse extensor digitorum longus, performed before and after 10 s of 10-Hz stimulation (i.e., the staircase potentiation protocol) were analyzed at five different lengths, ranging from optimal length for maximal force production (L(o); = 12 +/- 0.7 mm) to L(o) + 1.2 mm (L(o) + 10%). These measurements were made at an extracellular pH of 6.6, 7.4, and 7.8 (pH changes induced by altering the CO(2) concentration of the bath solution). At pH 7.4 and 7.8, the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased fiber bundle length (r(2) = 0.95 and r(2) = 0.99, respectively). At pH 6.6, the length dependence of potentiation was abolished, and the slope of the length-potentiation relationship was not different from zero (r(2) = 0.05). The results of this study indicate that length dependence of potentiation in intact skeletal muscle is abolished by lowering the pH. Because decreasing the pH decreases Ca(2+) sensitivity and changes the charge potential of the filaments, the mechanism of length-dependent potentiation may be closely related to the length dependence of Ca(2+) sensitivity, and changes in the charge potential of the myofilaments may be important in regulating this relationship.  相似文献   

3.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

4.
To test the hypothesis that an increased cAMP concentration improves skeletal muscle force development, we stimulated mouse soleus and extensor digitorum longus (EDL) in the presence of isoproterenol (1 x 10(-5) mol.L-1), a beta-adrenergic agonist, or N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (dcAMP) (1 x 10(-3) mol.L-1), a membrane-permeable cAMP analogue. Drugs used in the challenges were dissolved in Krebs-Henseleit bicarbonate buffer (Krebs) at 27 degrees C and gassed with 95% O2 - 5% CO2. Stimulation at 50 impulses.s-1 for 0.5 s produced an isometric tetanic contraction. Over 25 min of contractions at 0.6 contractions.min-1, developed force increased significantly with the addition of isoproterenol (soleus, 2.5% +/- 1.1%; EDL, 13.8% +/- 2.0%) or dcAMP (soleus, 2.3% +/- 0.5%; EDL, 10.9% +/- 1.9%) as compared with vehicle controls (cont) with Krebs added (soleus, 0.0% +/- 0.2%; EDL, -2.5% +/- 0.7%). To investigate the role of Ca2+ availability, we amplified or attenuated sarcolemmal L-type Ca2+ channels with Bay K 8644 (Bay K) (5.6 x 10(-6) mol.L-1) or diltiazem hydrochloride (dilt) (10(-4) mol.L-1), respectively. Ca2+ release from the sarcoplasmic reticulum was increased with caffeine (2 x 10(-3) mol.L-1) or decreased with dantrolene sodium (dant) (4.2 x 10(-7) mol.L-1). With Ca2+availability modified, dcAMP addition in soleus significantly increased force development above control (cont, 2.3% +/- 0.4%; Bay K, 4.0% +/- 1.0%; dilt, 52.3% +/- 3.6%; caffeine, 2.3% +/- 0.7%; dant, 6.0% +/- 2.0%; dilt + dant, 55.0% +/- 23.0%). In EDL, the addition of dcAMP also increased force development above control (cont, 13.7% +/- 1.9%; Bay K, 17.0% +/- 4.0%; dilt, 170.0% +/- 40.0%; caffeine, 23.0% +/- 4.0%; dant, 72.0% +/- 10.0%; dilt + dant, 54.0% +/- 14.0%). Thus, a positive inotropic effect of cAMP existed in both fast- and slow-twitch mammalian skeletal muscle with both normal and altered Ca2+ flux into the sarcoplasm.  相似文献   

5.
The purpose of this investigation was to examine the effects of the Ca2+ agonist BAY K 8644 and the Ca2+ antagonist nifedipine on halothane- and caffeine-induced twitch potentiation of mammalian skeletal muscle. Muscle fiber bundles were taken from normal Landrace pigs and exposed to BAY K 8644 (10 microM), nifedipine (1 microM), and low Ca2+ media administered alone and in combination with halothane (3%) or with increasing concentrations of caffeine (0.5-8.0 mM). Both BAY K 8644 and halothane potentiated twitches by approximately 80%; when they were administered in combination, twitch potentiation was nearly double that caused by either drug alone. In the presence of nifedipine, halothane increased twitches by less than 30%. Low Ca2+ significantly depressed twitches by approximately 25% but also inhibited halothane's inotropic effect. BAY K 8644 augmented caffeine potentiation but only at low caffeine concentrations (0.5-2.0 mM). Nifedipine and low Ca2+ failed to inhibit caffeine's inotropic effects. These results suggest that halothane potentiates twitches via a mechanism that involves or is influenced by extracellular Ca2+.  相似文献   

6.
Caffeine has been reported to have a positive and (or) a negative inotropic effect on cardiac muscle. In this study, the force-frequency and postrest characteristics of rat atrium were studied in the presence of caffeine (1.0-10 mM) to see if the interval between beats affected the response of cardiac muscle to caffeine. When stimulation frequency was 0.5 or 2.0 Hz, there was a positive followed by a negative inotropic response with 1, 5, or 10 mM caffeine. Incomplete relaxation occurred under these circumstances, giving rise to contracture. At low frequency of stimulation (0.1 Hz) caffeine had only a negative inotropic effect, and this effect was greater with 1 mM caffeine than with 5 mM caffeine. In the absence of caffeine, when stimulation at 0.5 or 3 Hz was interrupted, a pause of 2-20 s resulted in potentiation. When caffeine was present (2.0 mM), postrest potentiation was severely attenuated, but the steady-state contraction amplitude within the range 0.5-3.0 Hz was not different. These results are consistent with the hypothesis that caffeine induces a leak of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is extruded from the cell, possibly by Na+/Ca2+ exchange. Sarcoplasmic reticular uptake of Ca2+ and the translocation to release sites appear not to be affected by caffeine within 1-5 mM concentrations.  相似文献   

7.
Passive permeability of the endoplasmic reticulum of saponin-treated macrophages to Ca2+ was studied by the filtration method using 45Ca. The Ca2+ release from the endoplasmic reticulum of macrophages was enhanced by the presence of submicromolar concentrations of Ca2+ in the medium. The Ca2+ release was enhanced by caffeine, and suppressed by MgCl2. These phenomena are similar to the Ca2+-induced Ca2+ release reported for the sarcoplasmic reticulum of skeletal muscle. On the other hand, adenine suppressed the Ca2+ release from the endoplasmic reticulum, while it reportedly enhanced the Ca2+-induced Ca2+ release of the skeletal muscle. The threshold concentration of Ca2+ for the Ca2+-induced Ca2+ release was approximately 10(-8) M in the presence of 0.95 mM MgCl2 in macrophages. The spontaneous spreading of macrophages and spontaneous migration of macrophages were inhibited by adenine, and also by caffeine in spite of the enhancement of the Ca2+-induced Ca2+ release.  相似文献   

8.
Dantrolene reduces the elevated myoplasmic Ca(2+) generated during malignant hyperthermia, a pharmacogenetic crisis triggered by volatile anesthetics. Although specific binding of dantrolene to the type 1 ryanodine receptor (RyR1), the Ca(2+) release channel of skeletal muscle sarcoplasmic reticulum, has been demonstrated, there is little evidence for direct dantrolene inhibition of RyR1 channel function. Recent studies suggest store-operated Ca(2+) entry (SOCE) contributes to skeletal muscle function, but the effect of dantrolene on this pathway has not been examined. Here we show that azumolene, an equipotent dantrolene analog, inhibits a component of SOCE coupled to activation of RyR1 by caffeine and ryanodine, whereas the SOCE component induced by thapsigargin is not affected. Our data suggest that azumolene distinguishes between two mechanisms of cellular signaling to SOCE in skeletal muscle, one that is coupled to and one independent from RyR1.  相似文献   

9.
1. We determined the cytoplasmic Ca2+ concentration ([Ca2+]i) in cultured human muscle cells using the fluorescent indicator Quin-2. 2. The [Ca2+]i was dependent on the external Ca2+ concentration. Acetylcholine in the presence of external Ca2+ caused a transient increase in [Ca2+]i. Inhibition by nifedipine indicated that this response was mediated through activated voltage-operated channels. In nominally Ca2(+)-free buffer acetylcholine did not markedly increase [Ca2+]i. Therefore, the increase in [Ca2+]i as a response to depolarization is mainly due to influx of external Ca2+. 3. Various concentrations of caffeine did not influence the [Ca2+]i. Dantrolene decreased [Ca2+]i, both in the presence and absence of external Ca2+. The reduction probably resulted from an action of dantrolene on the intracellular Ca2+ stores, since dantrolene did not influence 45Ca2+ influx or efflux and caffeine partially counteracted the reduction.  相似文献   

10.
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle triggered when susceptible subjects are exposed to volatile anesthetic agents and/or depolarizing muscle relaxants. We have used Ca2+ selective microelectrodes to measure in vivo the intracellular free [Ca2+] in skeletal muscle of MH susceptible swine before and after the administration of dantrolene. We have investigated the effectiveness of this muscle relaxant in preventing clinical MH and the relationship between the resting intracellular free [Ca2+] and the probability of inducing the MH syndrome. The resting intracellular free [Ca2+] was 0.41 +/- 0.01 microM (M +/- SEM), which agrees with our previous measurements in susceptible swine. The administration of 0.5, 1, 2, 2.5 and 3 mg/Kg Dantrolene, reduced the intracellular free [Ca2+] to 0.31, 0.21, 0.09, 0.08, 0.08 microM respectively. The 0.5 mg/Kg dose induced a moderate decrease of [Ca2+]i and failed to prevent the MH syndrome after exposure to halothane (2%). The 1 mg/Kg dose produced a further reduction in [Ca2+]i and was sufficient to prevent the clinical syndrome in 2 out of 3 animals. The 2.5 mg/Kg dose was uniformly protective in all animals. These results suggest that the mechanism by which dantrolene protects susceptible animals exposed to triggering agents is by reducing the intracellular free [Ca2+] in skeletal muscle.  相似文献   

11.
The length dependence of force development of mammalian skeletal muscles was evaluated during twitch, double-pulse, and tetanic contractions, and the relation between muscle length and the time-dependent characteristics of twitch and double-pulse contractions were determined. In situ isometric contractions of the rat gastrocnemius muscle were analyzed at seven different lengths, based on a reference length at which the maximal response to double-pulse contractions occurred (Lopt-2P). Twitch and double-pulse contractions were analyzed for developed tension (DT), contraction time (tC), average rate of force development (DT-tC(-1)), half-relaxation time (t50%R), peak rate of relaxation (DT x dtmin(-1)), and 90%-relaxation time (t90%R). Considering the length at which maximal tetanic DT occurred to be the optimal length (Lo-TET), the peak DT for twitch contractions and double-pulse contractions was observed at Lo-TET + 0.75 mm (p < 0.05) and Lo-TET + 0.1 mm (p > 0.05), respectively. When measured at the length for which maximal twitch and double-pulse contractions were obtained, tetanic DT was 95.2 +/- 3 and 99.0 +/- 2% of the maximal value, respectively. These observations suggest that double-pulse contractions are more suitable for setting length for experimental studies than twitch contractions. Twitch and double-pulse contraction tC were 15.53 +/- 1.14 and 25.0 +/- 0.6 ms, respectively, at Lopt-2P, and increased above Lopt-2P and decreased below Lopt-2P. Twitch t50%R was 12.18 +/- 0.90 ms at Lopt-2P, and increased above Lopt-2P and below Lopt-2P. Corresponding changes for double-pulse contractions were greater. Stretching the muscle leads to slower twitch contractions and double-pulse contractions, but the mechanisms of this change in time course remain unclear.  相似文献   

12.
The relaxation and the inter-beat mechanical tension are termed lusitropic functions. It is generally assumed that they are primarily determined by Ca(2+) homeostasis of cardiac cell and by interactions of Ca(2+) with the contractile machinery. In the present study we studied the effects of various pharmacological interventions on the excitation-contraction coupling in right ventricular papillary muscles of adult rabbits at various stimulation rates. The maximal force of isometric contraction (MG, a.u.), the time to peak of isometric contraction (TTP, ms), the maximal speed of relaxation (dF/dt(relax)), the diastolic tension (DT, a.u.) and the total tension (MG+DT, a.u.) were measured. To affect excitation-contraction coupling, caffeine (5 mmol x l(-1)), ryanodine (1 micromol x l(-1)) and dantrolene sodium (50 micromol x l(-1)) were used. Whereas caffeine and ryanodine elicited a pronounced negative lusitropic effect, the effect of dantrolene was less dramatic with preserved frequency dependence. The results indicate that the key element for affecting the lusitropic functions is the ryanodine receptor of the sarcoplasmic reticulum (SR). The lusitropic effects of dantrolene, that affects cardiac excitation-contraction coupling but only minimally the ryanodine receptors of SR, were considerably less pronounced. The findings agree with the assumption that the lusitropic disturbances are closely related to the defects of SR ryanodine receptors of cardiac myocytes.  相似文献   

13.
The effects of caffeine on isometric contractions of right-ventricular strips during the postnatal development of the rat heart were studied. Caffeine (2-10 mM) had a positive inotropic effect on ventricular strips of 3-15-days-old rats but a negative inotropic effect on the muscles of rats older than 22 days. Rest-twitch potentiation was most prominent in the muscles of 3-15-days-old rats but weakened clearly after that age. The potentiation was eliminated by 5 and 10 mM caffeine. An abrupt increase in frequency from 0.2 to 2 Hz caused a positive tension-staircase in 3-15-days-old rats but a negative staircase in older rats, the latter effect being eliminated by caffeine. It is suggested that the observed changes during the third postnatal week are due to a shift from extracellular to intracellular Ca2+ as the main source of this cation.  相似文献   

14.
Effects of dantrolene, a blocker of intracellular Ca2+ release, on the oscillation of the intracellular Ca2+ ([Ca2+]i) induced by caffeine were studied in bullfrog sympathetic ganglion cells, using a Fura-2 fluorescence technique. Dantrolene blocked the Ca2+ oscillation only in the cell illuminated by ultraviolet light (335-385 nm). Likewise, the blocking effects on rhythmic Ca(2+)-dependent hyperpolarizations, representing Ca2+ oscillations via activation of Ca(2+)-dependent K+ channel, occurred only under the illumination with ultraviolet light (335-385 nm), but not with visible light (404-417 nm). This wavelength dependence differs from the absorbance spectrum of dantrolene. On the other hand, dantrolene preirradiated with ultraviolet light under dark condition or ultraviolet light itself did not affect the [Ca2+]i oscillation. The blocking action was not prevented by the pretreatment of the cells with reducing agents. These results indicate that illumination of the Ca2+ release channel or dantrolene itself with ultraviolet light (possibly the former) is necessary for the drug to exert its blocking effect. Furthermore, dantrolene was found to decrease Fura-2 fluorescence and to increase cell autofluorescence, leading sometimes to a false decrease in the basal [Ca2+]i.  相似文献   

15.
Protein kinase A anchoring proteins (AKAPs) tether cAMP-dependent protein kinase (PKA) to specific subcellular locations. The muscle AKAP, mAKAP, co-localizes with the sarcoplasmic reticulum Ca2+ release channel or ryanodine receptor (RyR). The purpose of this study was to determine whether anchoring of PKA by mAKAP regulates RyR function. Either mAKAP or mAKAP-P, which is unable to anchor PKA, was expressed in CHO cells stably expressing the skeletal muscle isoform of RyR (CHO-RyR1). Immunoelectron microscopy showed that mAKAP co-localized with RyR1 in disrupted skeletal muscle. Following the addition of 10 microm forskolin to activate adenylyl cyclase, RyR1 phosphorylation in CHO-RyR1 cells expressing mAKAP increased by 42.4 +/- 6.6% (n = 4) compared with cells expressing mAKAP-P. Forskolin treatment alone did not increase the amplitude of the cytosolic Ca2+ transient in CHO-RyR1 cells expressing mAKAP or mAKAP-P; however, forskolin plus 10 mm caffeine elicited a cytosolic Ca2+ transient, the amplitude of which increased by 22% (p < 0.05) in RyR1/mAKAP-expressing cells compared with RyR1/mAKAP-P-expressing cells. Therefore, localization of PKA by mAKAP at RyR1 increases both PKA-dependent RyR phosphorylation as well as efflux of Ca2+ through the RyR. Therefore, RyR1 function is regulated by mAKAP targeting of PKA, implying an important functional role for PKA phosphorylation of RyR in skeletal muscle.  相似文献   

16.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

17.
The effects of the muscle relaxant dantrolene on steps of excitation-contraction coupling were studied on fast twitch muscles of rodents. To identify the site of action of the drug, single fibers for voltage-clamp measurements, heavy SR vesicles for calcium efflux studies and solubilized SR calcium release channels/RYRs for lipid bilayer studies were isolated. Using the double Vaseline-gap or the silicone-clamp technique, dantrolene was found to suppress the depolarization-induced elevation in intracellular calcium concentration ([Ca2+]i) by inhibiting the release of calcium from the SR. The suppression of [Ca2+]i was dose-dependent, with no effect at or below 1 microM and a 53 +/- 8% (mean +/- SEM, n = 9, cut fibers) attenuation at 0 mV with 25 microM of extracellularly applied dantrolene. The drug was not found to be more effective if injected than if applied extracellularly. Calculating the SR calcium release revealed an equal suppression of the steady (53 +/- 8%) and of the early peak component (46 +/- 6%). The drug did not interfere with the activation of the voltage sensor in as much as the voltage dependence of both intramembrane charge movements and the L-type calcium currents (I(Ca)) were left, essentially, unaltered. However, the inactivation of I(Ca) was slowed fourfold, and the conductance was reduced from 200 +/- 16 to 143 +/- 8 SF(-1) (n = 10). Dantrolene was found to inhibit thymol-stimulated calcium efflux from heavy SR vesicles by 44 +/- 10% (n = 3) at 12 microM. On the other hand, dantrolene failed to affect the isolated RYR incorporated into lipid bilayers. The channel displayed a constant open probability for as long as 30-50 min after the application of the drug. These data locate the binding site for dantrolene to be on the SR membrane, but be distinct from the purified RYR itself.  相似文献   

18.
Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-activated protein kinase (AMPK) because alpha-AMPK Thr172 phosphorylation was not increased by caffeine. However, our previous studies, as well as the present, show that AMPK phosphorylation measured in whole muscle lysate is not a good indicator of AMPK activation in rodent skeletal muscle. In lysates from incubated rat soleus muscle, a predominant model in previous caffeine-studies, both acetyl-CoA carboxylase-beta (ACCbeta) Ser221 and immunoprecipitated alpha(1)-AMPK activity increased with caffeine incubation, without changes in AMPK phosphorylation or immunoprecipitated alpha(2)-AMPK activity. This pattern was also observed in mouse soleus muscle, where only ACCbeta and alpha(1)-AMPK phosphorylation were increased following caffeine treatment. Preincubation with the selective CaMKK inhibitor STO-609 (5 microM), the CaM-competitive inhibitor KN-93 (10 microM), or the SR Ca(2+) release blocking agent dantrolene (10 microM) all inhibited ACCbeta phosphorylation and alpha(1)-AMPK phosphorylation, suggesting that SR Ca(2+) release may work through a CaMKK-AMPK pathway. Caffeine-stimulated 2-deoxyglucose (2DG) uptake reflected the AMPK activation pattern, being increased with caffeine and inhibited by STO-609, KN-93, or dantrolene. The inhibition of 2DG uptake is likely causally linked to AMPK activation, since muscle-specific expression of a kinase-dead AMPK construct greatly reduced caffeine-stimulated 2DG uptake in mouse soleus. We conclude that a SR Ca(2+)-activated CaMKK may control alpha(1)-AMPK activation and be necessary for caffeine-stimulated glucose uptake in mouse soleus muscle.  相似文献   

19.
The neuroleptic malignant syndrome (NMS) is an uncommon but serious adverse effect of antipsychotic medication. Similarities in the clinical picture, and muscle alterations, between NMS and susceptibility to malignant hyperthermia (MH) suggest common mechanisms underlying both disorders. Sarcoplasmic ionic calcium concentration ([Ca2+]i) was measured by means of Ca2+ selective microelectrodes in intact intercostal muscle fibers isolated from NMS patients and from subjects with no evidence of neuromuscular disease, who served as controls. The mean resting membrane potential and [Ca2+]i were -84 +/- 0.4 mV and 0.11 +/- 0.01 microM (mean +/- SEM) in the control subjects, while they were -84 +/- 0.6 mV and 0.51 +/- 0.02 microM in NMS muscle fibers. Only the difference in [Ca2+]i is significant (P less than 0.001). The incubation of control and NMS muscle bundles in dantrolene (10(-6) M) induced a reduction of [Ca2+]i to 0.06 +/- 0.01 microM and 0.20 +/- 0.04 microM respectively. These results show an alteration in sarcoplasmic ionic [Ca2+] in NMS muscle fibers, suggesting that a dysfunction in skeletal muscle plays some role in the pathogenesis of NMS.  相似文献   

20.
Depolarizing ion gradients stimulate 45Ca release in skeletal muscle fibers skinned by microdissection. Several lines of indirect evidence suggest that sealed transverse (T) tubules rather than sarcoplasmic reticulum (SR) are the locus of such stimulatory depolarization. Two implications of this hypothesis were tested. (a) A requirement for signal transmission was evaluated from the stimulation of 45Ca efflux in fibers that had been highly stretched, an intervention that can impair the electrical stimulation of intact fibers. Length was increased over approximately 95-115 s, after loading with 45Ca and rinsing at normal length; prestimulus 45Ca loss due to stretch itself was very small. In the first study, stimulation of 45Ca release by KCl replacement of K propionate was inhibited completely in fibers stretched to twice slack length, compared with fibers at 1.05-1.1 times slack length. Identical protocols did not alter 45Ca release stimulated by caffeine or Mg2+ reduction, implying that SR Ca release per se was fully functional and inhibition was selective for a preceding step in ionic stimulation. In a second study, stimulation by choline Cl replacement of K methanesulfonate, at constant [K+] [Cl-] product, was inhibited strongly; total 45Ca release decreased 69%, and stimulation above control loss decreased 78%, in segments stretched to twice the length at which sarcomere spacing had been 2.2 micron, compared with paired controls from the same fibers kept at 2.3 micron. (b) Perchlorate potentiation of T tubule activation was evaluated in fibers stimulated at constant [K+] [Cl-] at normal length (2.3 micron); this anion shifts the voltage dependence of intramembrane charge movement and contractile activation in intact fibers. Perchlorate (8 mM) potentiated both submaximal stimulation of Ca2+-dependent 45Ca release by partial choline Cl replacement of K methanesulfonate and the small Ca2+-insensitive 45Ca efflux component stimulated by nearly full replacement in the presence of 5 mM EGTA. These results provide independent support for the hypothesis that the T tubules are the locus of stimulation by depolarizing ion gradients, with junctional transmission of this signal causing SR 45Ca release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号