首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent microbiological findings show how compounds, regarded hitherto as unusual substrates for anaerobic bacteria, are degraded under anaerobic conditions. The complete conversion of halobenzoic acids and halophenolic compounds to methane by lake sediment and sewage sludge microorganisms has been demonstrated. Since haloaromatic compounds are widely used and may be found in such effluents as those from the forest industry, these studies could stimulate a broader interest in anaerobic treatment of industrial waste waters which contain unusual organic compounds.  相似文献   

3.
4.
Biotransformation of halogenated compounds   总被引:7,自引:0,他引:7  
As a result of natural production and contamination of the environment by xenobiotic compounds, halogenated substances are widely distributed in the biosphere. Concern arises as a result of the toxic, carcinogenic, and potential teratogenic nature of these substances. The biotransformations of such halogenated substances are reviewed, with particular emphasis on the biocatalytic cleavage of the carbon-halogen bonds. The physiology, biochemistry, and genetics of the biological system involved in the dehalogenation reactions are discussed for three groups of organohalogens: (1) the haloacids, (2) the haloaromatics, and (3) the haloalkanes. Finally, the biotechnological applications of these microbial transformations are discussed. This includes prospects for their future application in biosynthetic processes for the synthesis of halogenated intermediates or novel compounds and also the use of such systems for the detoxification and degradation of environmental pollutants.  相似文献   

5.
New biological inspired methods were recently developed to recover precious metals from waste streams and to concomitantly produce palladium nanoparticles on bacteria, that is, bio-Pd. This technology offers a variety of opportunities, as the process can considered to be green, tunable, affordable and scalable. The nanoparticle formation and the specific role of the bacteria in the reclamation process are highlighted. The effective performance of bio-Pd as catalyst in dehalogenation reactions, as well as in hydrogenation, reduction and CC coupling reactions has been extensively described in literature. Especially dehalogenation of environmental contaminants represents a promising market for application of bio-Pd. Therefore, several treatment technologies based on bio-Pd in the different environmental compartments are considered and domains, in which bio-Pd can be used at full scale are described. Finally, the perspectives for implementation of the bio-Pd technology in the future are set forward.  相似文献   

6.
7.
8.
Degradation of halogenated aromatic compounds   总被引:5,自引:1,他引:4  
Due to their persistence, haloaromatics are compounds of environmental concern. Aerobically, bacteria degrade these compounds by mono- or dioxygenation of the aromatic ring. The common intermediate of these reactions is (halo)catechol. Halocatechol is cleaved either intradiol (ortho-cleavage) or extradiol (meta-cleavage). In contrast to ortho-cleavage, meta-cleavage of halocatechols yields toxic metabolites. Dehalogenation may occur fortuitously during oxygenation. Specific dehalogenation of aromatic compounds is performed by hydroxylases, in which the halo-substituent is replaced by a hydroxyl group. During reductive dehalogenation, haloaromatic compounds may act as electron-acceptors. Herewith, the halosubstituent is replaced by a hydrogen atom.Abbreviations CBz chlorobenzene - DCBz dichlorobenzene - TrCBz trichlorobenzene - TCBz tetrachlorobenzene - PCBz pentachlorobenzene - HCBz hexachlorobenzene - CBA chlorobenzoic acid - BBA bromobenzoic acid - FBA fluorobenzoic acid - IBA iodobenzoic acid - CP chlorophenol - CA chloroaniline - PCBs polychlorinated biphenyls - CB chlorobiphenyl - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid  相似文献   

9.
D M Danks  R G Cotton 《Enzyme》1987,38(1-4):296-301
Treatment of classical phenylketonuria (PKU) is very good, but problems still exist in regard to the duration of treatment and a means of ensuring that all women with PKU recommence dietary treatment before becoming pregnant. A 'one-shot' cure of the disease remains desirable and may become available in the more distant future by somatic cell gene therapy. Insertion of a normal gene or correction of the defective gene at the normal site in the chromosome and in liver cells is likely to be necessary both technically and ethically. Prevention by prenatal diagnosis is not widely accepted in Australia and is likely to have little effect on the frequency of the disease.  相似文献   

10.
Current trends in the development of methods for monitoring, modeling and controlling biological production systems are reviewed from a bioengineering perspective. The ability to measure intracellular conditions in bioprocesses using genomics and other bioinformatics tools is addressed. Devices provided via micromachining techniques and new real-time optical technology are other novel methods that may facilitate biosystem engineering. Mathematical modeling of data obtained from bioinformatics or real-time monitoring methods are necessary in order to handle the dense flows of data that are generated. Furthermore, control methods must be able to cope with these data flows in efficient ways that can be implemented in plant-wide computer communication systems.Mini-review for the proceedings of the M3C conference  相似文献   

11.
闵军  陈卫卫  李俊德  胡晓珂 《微生物学报》2020,60(12):2816-2835
硝基芳烃化合物作为一种重要的化工原料,广泛应用于医药、染料、农药等化工产品的合成。在给人类社会带来空前的物质繁荣的同时,其造成的环境污染问题也成为人类社会面临的重要挑战之一。微生物在这些环境污染物的降解中起着重要的作用。近几十年,环境微生物工作者对微生物降解硝基芳香污染物的各个步骤,包括趋化感应、分解代谢及生物修复进行了大量的研究工作,获得了丰富的知识。本文综述了硝基芳烃及其卤代衍生物的微生物代谢途径、代谢机理、趋化及修复研究进展,并对本领域的研究进行了展望,有助于全面认知硝基芳烃污染物的微生物降解过程,为污染环境修复提供理论基础。  相似文献   

12.
The biodegradation of halogenated organic compounds   总被引:1,自引:0,他引:1  
  相似文献   

13.
Biodegradation of halogenated organic compounds.   总被引:30,自引:2,他引:30       下载免费PDF全文
In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant compounds. Recent developments in designing recombinant microorganisms and hybrid metabolic pathways are discussed.  相似文献   

14.
The white-rot fungusBjerkandera adusta produces volatile chlorinated phenyl compounds. The main compounds identified were 3-chloro-4-methoxybenzaldehyde (3-chloro-p-anisaldehyde), 3-chloro-4-methoxybenzyl alcohol (3-chloro-p-anisyl alcohol), 3,5-dichloro-4-methoxybenzaldehyde (3,5-dichloro-p-anisaldehyde), and 3,5-dichloro, 4-methoxybenzyl alcohol (3,5-dichloro-p-anisyl alcohol).p-Anisaldehyde, veratraldehyde and the corresponding alcohols,p-anisyl alcohol and veratryl alcohol were produced simultaneously. Even with a very low concentration of chloride in the medium (< 10–5 m), chlorinated aromatic compounds were still observed. Addition of bromide to the culture medium led to the production of brominated compounds: 3-bromo-4-methoxybenzaldehyde, 3-bromo-4-methoxybenzyl alcohol, 3,5-dibromo-4-methoxybenzaldehyde and 3-bromo-5-chloro-4-methoxybenzaldehyde. These brominated compounds have not previously been reported as natural products. Although iodo-aromatic compounds were not produced by supplementation of the medium with iodide, isovanillin was found in the culture broth under these conditions. This compound may be formed by substitution of the iodine intermediate by a hydroxyl group on the third carbon of the ring. Diiodomethane or chloroiodomethane were also found. It is the first time that the production of halomethane has been related to the production of halogenated aromatic compounds. All the strains tested have these capabilities.  相似文献   

15.
The biodegradation of halogenated organic compounds   总被引:4,自引:0,他引:4  
  相似文献   

16.
Volatile halogenated organic compounds in European estuaries   总被引:4,自引:1,他引:4  
Sources, sinks, and distribution patterns ofvolatile halogenated organic compounds (VHOC)in estuaries were investigated during 5 cruises within the BIOGEST programme. Due to their chemical and physical properties (e.g. toxicity, persistence, mobility) these compounds are of considerable environmental concern. A wide range of compounds has been identified and quantified generally ranging from 0.1 ng l–1 to 350 ng l–1. Insome samples extraordinarily high values up to4700 ng l–1 were observed indicatingcontribution from anthropogenic sources.Generally, concentrations of halogenatedcompounds of anthropogenic origin dominatedthose of prevalent natural origin. Data ofselected VHOC are presented in relation tosalinity, particular organic carbon, and totalsuspended matter. Furthermore the observedconcentrations are compared with establishedwater quality regulations. Distributionpatterns of VHOC along the estuary indicatedcommon sources for specific halogenatedcompounds. Decreasing concentrations of mostVHOC along the estuary confirm that degassingto the atmosphere and dilution with sea waterare the dominating processes controlling thefate of these compounds in estuaries.  相似文献   

17.
The structurally related polyhalogenated diaryl ethers such as diphenyl ethers (DEs), dibenzofurans (DFs), and dibenzo-p-dioxins (DDs) are regarded, due to their physicochemical and toxicological properties, as a class of compounds giving reason for serious environmental concern. While the nonhalogenated basic structures are biodegradable under aerobic conditions, there is the need for rather specialized strains to mineralize the halogenated derivatives. Certain halogenated metabolites might cause serious problems such as having inhibitory effects upon the degradation. Anaerobic methanogenic consortia do have the ability to almost completely dehalogenate even polyhalogenated congeners. It has been shown that certain fungi are capable of transforming chlorinated DFs and DDs by the activity of nonspecific enzymes such as lignin-peroxidases.  相似文献   

18.
19.
Abstract Considerable progress has been made in the last few years in understanding the mechanisms of microbial degradation of halogenated aromatic compounds. Much is already known about the degradation mechanisms under aerobic conditions, and metabolism under anaerobiosis has lately received increasing attention. The removal of the halogen substituent is a key step in degradation of halogenated aromatics. This may occur as an initial step via reductive, hydrolytic or oxygenolytic mechanisms, or after cleavage of the aromatic ring at a later stage of metabolism. In addition to degradation, several biotransformation reactions, such as methylation and polymerization, may take place and produce more toxic or recalcitrant metabolites. Studies with pure bacterial and fungal cultures have given detailed information on the biodegradation pathways of several halogenated aromatic compounds. Several of the key enzymes have been purified or studied in cell extracts, and there is an increasing understanding of the organization and regulation of the genes involved in haloaromatic degradation. This review will focus on the biodegradation and biotransformation pathways that have been established for halogenated phenols, phenoxyalkanoic acids, benzoic acids, benzenes, anilines and structurally related halogenated aromatic pesticides. There is a growing interest in developing microbiological methods for clean-up of soil and water contaminated with halogenated aromatic compounds.  相似文献   

20.
Trihalomethanes, carbon tetrachloride, 1,1,1-trichloroethane, 1,2-dibromoethane, chlorinated benzenes, ethylbenzene, and naphthalene at concentrations commonly found in surface and groundwater were incubated under anoxic conditions to study their transformability in the presence of denitrifying bacteria. None of the aromatic compounds showed significant utilization relative to sterile controls at initial concentrations from 41 to 114 micrograms/liter after 11 weeks of incubation. Of the halogenated aliphatic compounds studied, transformations of carbon tetrachloride and brominated trihalomethanes were observed after 8 weeks in batch denitrification cultures. Carbon from the decomposition of carbon tetrachloride was both assimilated into cell material and mineralized to carbon dioxide. How this was possible remains unexplained, since carbon tetrachloride is transformed to CO2 by hydrolysis and not by oxidation-reduction. Chloroform was detected in bacterial cultures with carbon tetrachloride initially present, indicating that reductive dechlorination had occurred in addition to hydrolysis. The data suggest that transformations of certain halogenated aliphatic compounds are likely to occur under denitrification conditions in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号