首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.  相似文献   

2.
We analysed the relative effects of food availability and temperature on rates of growth and development of a predatory planktonic water mite, Piona exigua. Growth in length of mites fed Daphnia, Ceriodaphnia and Chydorus was analysed by Gompertz or von Bertalanffy curves; these curves were compared by parallel curve analysis. Growth rates of nymphs and adult female mites increased with temperature; the duration of the imagochrysalis stage decreased. Females grown at 10 °C were smaller at final size than females grown at 15 °C, 18 °C or 22 °C. Females reared at food levels of 15 or 30 prey l−1 grew more slowly and were smaller than those provided with 60 or 120 prey l−1. Nymphs grew more slowly when Daphnia were the only prey, than when smaller prey were available. Food level did not affect nymph growth at 10 °C or 15 °C, but growth at 18 °C or 22 °C may have been slowed at the lowest food levels. Synergistic effects of temperature and food level on nymph growth were apparent only from analysis of growth curves and not from stage duration data.  相似文献   

3.
Mismatches between predator and prey due to climate change have now been documented for a number of systems. Ultimately, a mismatch may have far-reaching consequences for ecosystem functioning as decoupling of trophic relationships results in trophic cascades. Here, we examine the potential for climate change induced mismatches between zooplankton and algae during spring succession, with a focus on Daphnia and its algal food. Whereas the development of an overwintering population of daphnids may parallel shifts in phytoplankton phenology due to climate warming, changes in the photoperiod–temperature interaction may cause the emerging population of daphnids to hatch too late and mismatch their phytoplankton prey. A decoupling of the trophic relationship between the keystone herbivore Daphnia and its algal prey can result in the absence of a spring clear water phase. We extended an existing minimal model of seasonal dynamics of Daphnia and algae and varied the way the Daphnia population is started in spring, i.e., from free swimming individuals or from hatching resting eggs. Our model results show that temperature affects the timing of peak abundance in Daphnia and algae, and subsequently the timing of the clear water phase. When a population is started from a small inoculum of hatching resting eggs, extreme climate warming (+6°C) results in a decoupling of trophic relationships and the clear water phase fails to occur. In the other scenarios, the trophic relationships between Daphnia and its algal food source remain intact. Analysis of 36 temperate lakes showed that shallow lakes have a higher potential for climate induced match–mismatches, as the probability of active overwintering daphnids decreases with lake depth. Future research should point out whether lake depth is a direct causal factor in determining the presence of active overwintering daphnids or merely indicative for underlying causal factors such as fish predation and macrophyte cover. Priority program of the German Research Foundation—contribution 5.  相似文献   

4.
Kurmayer  Rainer 《Hydrobiologia》2001,442(1-3):279-289
It is generally assumed that Daphnia is more susceptible to the inhibitory effects of filamentous cyanobacteria than small cladocerans since daphnids have a larger gape size and filtrate the filaments, whereas small cladocerans do not. This study addresses the question whether food limitation has the potential to modify this scenario of cladoceran response to dominance of non-toxic filamentous cyanobacteria. Daphnia galeatawas grown under limited (0.1 mg C l–1) and unlimited concentrations (1.0 mg C l–1) of high-quality food algae both in the absence/presence of non-toxic filamentous Aphanizomenon flexuosum. As the effects of these cyanobacteria on D. galeatawere positive under food limiting conditions and negative at the high food density, it was concluded that D. galeatawas mainly affected by nutritional quality due to its ability to ingest the filaments, while mechanical interference with food collection was not important. In competition experiments between D. galeataand Bosmina longirostris, D. galeatawas the dominant species at regular additions of food (1.0 mg C l–1) in the absence of Aphanizomenon. In the presence of these cyanobacteria, D. galeatawas inhibited during the first days of the experimental period. However, the negative effect at the initially high food density was outweighed by nutrition at food limiting conditions and the outcome in competitive dominance was not changed. The results demonstrate that the ability of D. galeata to ingest large-sized non-toxic cyanobacteria can be considered as advantageous under food limiting conditions.  相似文献   

5.
Life-history variation in a hybrid species complex ofDaphnia   总被引:3,自引:0,他引:3  
L. J. Weider  H. G. Wolf 《Oecologia》1991,87(4):506-513
Summary Life-history variation was examined among members of theDaphnia longispina group, which consists ofD. galeata, D. hyalina, D. cucullata, and hybrids. Factorial experiments were conducted at two temperatures (14° and 20° C) and two food concentrations (0.2 and 1.0 mg Cl−1). Differences in life-history features (size at maturity, age at first reproduction, size of first clutch, offspring size in first clutch) under the different environmental conditions were assessed among eightDaphnia clones, which represented members of this species complex. Significant differences between parentals and hybrids for most life-history features were observed under various treatments; generally, hybrid clones showed intermediate life-history traits when compared with parentals. When comparisons were made among clones within a given species (i.e.D. galeata, D. galeata xcucullata, D. cucullata), clonal differences were also noted for certain life-history traits. The data are discussed with reference to the formation and maintenance of hybrid species complexes in nature. This paper is dedicated to the memory of Hans Georg Wolf, who died suddenly in May 1990 at the age of 39 years.  相似文献   

6.
It has been hypothesized that the production of diapausing eggs in Daphnia can be induced by fish kairomones. A population of Daphnia could survive severe predation using this predator avoidance strategy. However, in changing environments, diapausing eggs experience various temperature conditions, and hatchlings at emergence may be exposed to the same predation risks as their mothers. Therefore, staying in diapause or an immediate response upon hatching to available environmental information could be important for hatchling survival. For this study, we investigated the impact of water temperature (10, 15, 20, and 25°C) in the presence and absence of fish kairomones (Lepomis macrochirus) on the hatching success of resting eggs (D. galeata). Results show that no diapausing eggs hatched at the lowest temperature (10°C), and the highest hatch percentage occurred at 15°C. Although higher water temperatures reduced hatching success, diapausing eggs hatched more quickly. The number of hatchlings was significantly higher after exposure to fish kairomones, and this was more noticeable at higher temperatures (20 and 25°C). The present results suggest that the diapausing eggs were produced as a predator avoidance strategy in Daphnia; however, the presence of fish works as a positive signal to increase hatchlings when the diapausing stage is terminated.  相似文献   

7.
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming.  相似文献   

8.
Simčič  Tatjana  Brancelj  Anton 《Hydrobiologia》2001,442(1-3):319-328
Seasonal changes of the community composition, oxygen consumption (R) and respiratory electron transport system (ETS)-activity of the Daphnia community living in Lake Bled (Slovenia) were studied between January and December 1998. The ETS activity of ovigerous Daphnia females at in situ temperature ranged from 3.27 l O2 mg dw–1 h–1 in February to 20.91 l O2 mg dw–1 h–1 in July. Respiration rates at in situ temperature varied from 4.04 l O2 mg dw–1h–1 in December to 18.68 l O2 mg dw–1 h–1in July. The influence of four factors (temperature, body size, fecundity, genetic differences) on the metabolism were investigated. Both ETS activity and respiration rate significantly correlated with temperature. The proportion of hybrid D. cucullata× galeata in Daphnia community correlated significantly with respiration rate at in situtemperature and ETS activity at standard temperature also. ETS activity and respiration rate showed no significant correlation with body size and the fecundity of Daphnia, whereas ETS activity in D. hyalina × galeata and D. cucullata× galeataseparately correlated with body size. ETS activity of D. hyalina × galeata also was correlated with fecundity. Hybrid D. hyalina× galeata had up to one third lower ETS activity than D. cucullata× galeata. The mean ETS/R ratio in the Daphnia community was 1.16±0.28 (N= 12). The ETS/R ratio did not correlate significantly with temperature, body size, fecundity or the proportion of D. cucullata× galeatain the Daphnia community. Laboratory experiments showed that both hybrids had similar ETS/R ratios.  相似文献   

9.
Food limitation was tested in the laboratory by individual growth and reproduction of two cladoceran species, Ceriodaphnia richardi and Daphnia gessneri, from the shallow tropical Brazilian Lake Monte Alegre. The cladocerans were fed cultivated green alga Scenedesmus spinosus in concentrations of 0.20, 0.10, 0.05, and 0.025 mg C l−1. Higher biomass and growth rates occurred in the two highest-food concentrations; the two lowest ones negatively affected clutch size and first reproduction. The threshold food concentration is lower than 0.025 mg C l−1 and the incipient limiting level is a value between 0.10 and 0.20 mg C l−1. The largest species, D. gessneri, was more sensitive to low food concentrations. The effects of low and high temperatures (19 and 27°C) were evaluated by life table experiments with three cladocerans from the lake—Daphnia ambigua, D. gessneri, and Moina micrura—with no food limitation (1 mg C l−1 of S. spinosus). Higher population growth rates for the three species were found at 27°C; better performance in most life table parameters was observed for the former two species at the highest temperature, D. gessneri being the most sensitive to the lowest temperature. There are indications that temperature is an important abiotic factor that constrains populations of cladocerans for a short period in winter in the lake, when temperature decreases to 18–19°C. However, its influence cannot be separated from a biotic factor such as food, whose effect is stronger in the cool season, when concentrations are lower and contribution of inedible algae is relatively higher.  相似文献   

10.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

11.
This study examined the formation of morphological defences by two coexisting Daphnia species, the large-sized D. pulicaria (2 mm) and the small-sized D. mendotae (1.4 mm), in response to the presence of young-of-the-year (YOY) yellow perch (Perca flavescens) and invertebrate predators (Chaoborus, Leptodora) during summer in a mesotrophic lake. We hypothesized that due to differential size-selective predation risk by YOY fish and invertebrates, the large-sized and the small-sized Daphnia species would show different morphological responses to predation threats. We followed changes in two morphological traits (relative length of the tail spine in D. pulicaria and of the helmet in D. mendotae) among different periods during summer according to YOY fish and invertebrate predation. We defined four YOY fish predation periods based on the presence of YOY perch in the pelagic zone of the lake and the relative abundance of Daphnia preys in their gut contents, and two invertebrate predation periods based on exclusive or mutual occurrence of the invertebrate predators. The large-sized (D. pulicaria) and the small-sized (D. mendotae) species showed different morphological responses to YOY fish and invertebrate predators, respectively. The tail spine ratio of the juveniles and adults of D. pulicaria did not change in response to YOY fish predation or to invertebrate predation. A gradual increase in the helmet ratio was observed in the small-sized D. mendotae over the summer period. This change was related to the co-occurrence of the invertebrate predators (Chaoborus and Leptodora) and to YOY fish predation. The warmer temperature cannot be accounted for helmet elongation since it was constant across depths, and not related with the co-occurrence of D. mendotae and YOY perch. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

12.
Carolyn W. Burns 《Oecologia》1995,101(2):234-244
The effects of daphniid crowding on juvenile growth rate, length at first reproduction, clutch size and egg size of four species of Daphnia were compared with the effects of food level. Juvenile Daphnia were grown to primipary in a flow-through system in water conditioned by different densities of the same, or another, species. At high ambient food levels, water from Daphnia that had been crowded at densities 150 l–1 depressed growth rate and lowered body size and clutch size of D. hyalina and D. galeata; effects on the same traits of D. magna and D. pulicaria were variable (stimulation, depression, or no effect). D. hyalina and D. galeata responded to gradients of increasing daphniid density (0–300 l–1) by altering egg mass, somatic mass and clutch size to maintain a relatively constant reproductive investment; egg mass increased with crowding and then decreased in a pattern consistent with Glazier's (1992) hypothetical model of changes in offspring size in relation to food quantity and maternal demand. Effects of crowding by conspecifics were indistinguishable from those of other species. This study, which uncouples the effect of crowding per se from ambient resource depletion, shows that chemical substances released by high densities of Daphnia can cause changes in life-history traits comparable to those that occur in response to low food levels.  相似文献   

13.
Worldwide, urbanization leads to tremendous anthropogenic environmental alterations, causing strong selection pressures on populations of animals and plants. Although a key feature of urban areas is their higher temperature (“urban heat islands”), adaptive thermal evolution in organisms inhabiting urban areas has rarely been studied. We tested for evolution of a higher heat tolerance (CTMAX) in urban populations of the water flea Daphnia magna, a keystone grazer in freshwater ecosystems, by carrying out a common garden experiment at two temperatures (20°C and 24°C) with genotypes of 13 natural populations ordered along a well‐defined urbanization gradient. We also assessed body size and haemoglobin concentration to identify underlying physiological drivers of responses in CTMAX. We found a higher CTMAX in animals isolated from urban compared to rural habitats and in animals reared at higher temperatures. We also observed substantial genetic variation in thermal tolerance within populations. Overall, smaller animals were more heat tolerant. While urban animals mature at smaller size, the effect of urbanization on thermal tolerance is only in part caused by reductions in body size. Although urban Daphnia contained higher concentrations of haemoglobin, this did not contribute to their higher CTMAX. Our results provide evidence of adaptive thermal evolution to urbanization in the water flea Daphnia. In addition, our results show both evolutionary potential and adaptive plasticity in rural as well as urban Daphnia populations, facilitating responses to warming. Given the important ecological role of Daphnia in ponds and lakes, these adaptive responses likely impact food web dynamics, top‐down control of algae, water quality, and the socio‐economic value of urban ponds.  相似文献   

14.
1. In a thermally stratified water column with a deep‐water algal maximum, Daphnia face a trade‐off between food (high fecundity) and temperature (fast development). Recent studies showed that Daphnia populations move up and down the entire water column to take advantage of both, but the proportion of time allocated by individuals to the epilimnion, metalimnion and hypolimnion with their specific food and temperature conditions is not yet known. 2. In a system of 1 m deep, vertical perspex tubes, I established three temperature gradients with 2, 5 and 10 °C differences between the surface (epilimnion) and the bottom layer (hypolimnion). Algae were added to the hypolimnion to simulate a deep‐water algal maximum. 3. The migration behaviour of individual neonate and egg‐bearing Daphnia hyalina × galeata was monitored in order to measure the proportions of time the individuals allocated to the different vertical habitats and to assess the frequency of their shifts between epilimnion and hypolimnion. 4. Neonates stayed continuously at the surface, taking advantage of the higher temperature, possibly because feeding was less important for them because of egg yolk reserves. In contrast, egg‐bearing females spent more time feeding in the hypolimnion when the temperature gradient was weak, but also migrated into the epilimnion to take advantage of the higher temperature. In the steepest temperature gradient, the egg‐bearing females either shifted between epilimnion and hypolimnion, or dwelled constantly in the metalimnion with intermediate conditions.  相似文献   

15.
1. We studied the effects of fish water and temperature on mechanisms of competitive exclusion among two Daphnia species in flow‐through microcosms. The large‐bodied D. pulicaria outcompeted the medium sized D. galeata × hyalina in fish water, but not in the control treatment. Daphnia galeata × hyalina was competitively displaced 36 days earlier at 18 °C than at 12 °C. 2. It is likely that the high phosphorus content of fish water increased the nutritional value of detrital seston particles by stimulating bacterial growth. Daphnia pulicaria was presumably better able to use these as food and hence showed a more rapid somatic growth than its competitor. This led to very high density of D. pulicaria in fish water, but not in the controls. The elevated D. pulicaria density coincided with high mortality and reduced fecundity in D. galeata × hyalina, resulting in competitive displacement of the hybrid. 3. It is clear that the daphnids competed for a limiting resource, as grazing caused a strong decrease in their seston food concentration. However, interference may also have played a role, as earlier studies have shown larger Daphnia species to be dominant in this respect. The high density of large‐bodied D. pulicaria in fish water may have had an allelopathic effect on the hybrid. Our data are inconclusive with respect to whether the reached seston concentration was below the threshold resource level (R*) of the hybrid, where population growth rate and mortality exactly balance, as it would be set in the absence of interference, or whether interference actually raised the hybrid's R* to a value above this equilibrium particle concentration. 4. Our results do clearly show that fish‐released compounds mediated competitive exclusion among zooplankton species and that such displacement occurred at a greatly enhanced rate at an elevated temperature. Fish may thus not only structure zooplankton communities directly through size‐selective predation, but also indirectly through the compounds they release.  相似文献   

16.
Hybridization is a common phenomenon in Daphnia species complexes. Hybrids often dominate in Daphnia populations; therefore it is worthwhile to look for principal differences between parental and hybrid populations with respect to their genetic structure and clonal differentiation. We studied natural populations of members of the Daphnia galeata/hyalina/cucullata complex in three lakes. In one of these lakes, one parental species (D. galeata) and one hybrid (D. galeata × cucullata) were investigated more intensively. The frequency of sexual reproduction was higher in parental populations, whereas clonal diversity was higher in hybrid populations. Ecological differentiation among clonal groups was more pronounced in the D. galeata × cucullata hybrid compared to D. galeata, whereas selection intensity was weaker. These results are discussed with respect to stability of clonal groups, multiple hybridizations and selective constraints.  相似文献   

17.
The effect of water temperature on behaviour and life history of wintering age‐0 = young‐of‐the‐year (YOY) northern sturgeons (populations using winter refuge habitat) is poorly understood. Using artificial stream tanks, we observed the effect of water temperature on 1) day‐time activity of cultured YOY Kootenai River white sturgeon, Acipenser transmontanus, during two winters (2008 and 2009–2010), and 2) observed day‐time activity of cultured YOY Connecticut River shortnose sturgeon, A. brevirostrum, in the winter, 2009–2010. Activity of YOY was measured every 2 to 7 days by visual or video observations on each fish to determine the mean number of 10 cm2 square gridlines on the tank bottom crossed by all fish in each replicate tank (two replicate tanks, 10 fish in each tank). Daily water temperature was recorded by a logger in one tank every 20 min, 24 hr per day. In 2008, YOY A. transmontanus activity was positively related to decreasing mean daily temperature (R2 = 0.96, p < 0.01) with 0 to 5 gridlines (range) crossed by all fish during observation periods at the coldest temperature (≤3°C). During the winter of 2009–2010, activity of both species was significantly related to decreasing temperature, and again, a mean of 0 to 5 gridlines (range) were crossed by fish at ≤3°C. We accept the hypothesis that YOY of both species are mostly inactive in the day when winter water temperature decreases to ≤3°C. Using the daytime inactivity temperature threshold of 3°C for YOY, and recent temperatures in river reaches where wild wintering YOY likely occur, we predict (a) wild wintering YOY A. transmontanus are moderately active in the day, may be energy challenged due to elevated temperatures from the warm river discharge by Libby Dam, and have poor survival in the regulated Kootenay River, and (b) wintering YOY Connecticut River A. brevirostrum are moderately active most winter months due to elevated natural river temperatures and may be energy challenged. More research is needed on YOY wintering activity and energetics relative to temperature to insure management of river temperature includes conservation of sturgeons.  相似文献   

18.
1. We examined the responses of two species of Daphnia to changes in food phosphorus (P) content, with animals reared at three different water temperatures. Specifically, we measured mass‐specific growth rate (MSGR), body P content and respiration rate of Daphnia magna and Daphnia pulex acclimatised to 10, 17.5 and 25 °C and fed food carbon : phosphorus (C : P) ratios of either 150 or 500. 2. The responses of these three physiological variables to temperature–food quality interactions were species‐specific. There was a significant interactive effect of temperature and food quality on D. magna, as the greatest proportional effect of food quality on growth was observed at 10 °C and reductions in body P because of low food P content were relatively greater at 25 °C. These effects may reflect the temperature dependence of mechanisms that reduce elemental constraints associated with food quality in D. magna. By contrast, there were no interactive effects between food quality and temperature on MSGR, body P or mass‐specific respiration of D. pulex. 3. It thus appears that temperature can alter food quality effects on Daphnia but the nature of these alterations depends upon the daphniid species and its thermal adaptability. Significant temperature–food quality interactions will complicate efforts to understand zooplankton nutrition in nature and warrant future consideration.  相似文献   

19.
Weekly measurements of mesozooplankton (>76 μm) and hydrographic parameters have been carried out since 1984 in the List Tidal Basin (northern Wadden Sea). Monthly water temperature significantly increased by 0.04°C year−1. The largest increase by 3°C in 22 years occurred in September, implying an extension of the warm summer period. Mean annual copepod abundance and length of copepod season correlated significantly with mean temperature from January to May. Except for an increasing Acartia sp. abundance during spring (April–May), no long-term trends in copepod abundance were observed. The percentage of carnivorous zooplankton increased significantly since 1984 mainly due to a sudden increase in the cyclopoid copepod Oithona similis in 1997. We expect that global warming will lead to a longer copepod season and higher copepod abundances in the northern Wadden Sea.  相似文献   

20.
Kessler K  Lampert W 《Oecologia》2004,140(3):381-387
In thermally stratified lakes with a deep chlorophyll maximum (DCM), Daphnia face a trade-off between food availability and optimum development temperatures. We hypothesize that Daphnia optimize their fitness by allocating the time spent in the different vertical habitats depending on the distribution of algal resources and the temperature gradient. We used the plankton towers (large indoor mesocosms) to study the vertical distribution of a population of Daphnia hyalina×galeata in three different temperature gradients with a DCM. Additionally, we determined the fitness of Daphnia in the epilimnion and hypolimnion by transferring water from these layers into flow-through systems where we raised Daphnia and assessed their juvenile growth rate as a measure of fitness. The fitness distribution was correlated with the vertical distribution. The vertical distribution most likely reflected the proportions of time Daphnia allocated to dwelling in the two vertical habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号