首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin counteracted the effects of a pure alpha-adrenergic agonist, phenylephrine, on hepatocyte glycogen synthase and phosphorylase. These results argue against current concepts of insulin increasing cytoplasmic Ca2+ concentration.  相似文献   

2.
The selective alpha 2-antagonist DG-5128 provoked a dose-dependent stimulation of insulin release from isolated rat islets. DG-5128 was only weakly effective as an antagonist of noradrenaline-induced inhibition of insulin secretion but, surprisingly, was able to reverse the suppression of secretion and increase in 86Rb efflux from preloaded islets, mediated by diazoxide. These effects were not reproduced with more effective alpha-antagonists, suggesting that stimulation of insulin secretion by DG-5128 is independent of alpha-receptor blockade.  相似文献   

3.
4.
Insulin inhibition of alpha-adrenergic actions in liver.   总被引:1,自引:7,他引:1       下载免费PDF全文
The effects of insulin on alpha-agonist (phenylephrine)- and [Arg8]vasopressin-induced Ca2+ and glucose release and mitochondrial Ca2+ fluxes in isolated perfused rat livers were examined. Insulin (6 nM) inhibited the ability of phenylephrine (1 and 0.5 microM) to elicit Ca2+ and glucose release, whereas it was without effect on vasopressin (10 and 2.5 nM) actions. Correspondingly, insulin inhibited the action of phenylephrine to induce a stable increase in mitochondrial Ca2+ uptake, but it did not affect the alteration caused by vasopressin. Phenylephrine and vasopressin caused transient increases in hepatocyte respiration. Insulin inhibited the effect of phenylephrine on this parameter, but not that of vasopressin. Insulin added alone did not alter any of the above parameters. It is concluded from these data that insulin does not alter cellular Ca2+ fluxes and respiration themselves, but selectively inhibits alpha-adrenergic stimulation of these processes. It is proposed that insulin acts either to inhibit binding of alpha-agonists to their specific plasma-membrane receptors or to alter generation and/or degradation of the putative alpha-adrenergic 'second messenger'. If this latter possibility is the case, then the alpha-adrenergic 'second messenger' must be different from the 'second messenger' of vasopressin.  相似文献   

5.
The reported association of mitral valve prolapse with autonomic dysfunction and neuroendocrine abnormalities is derived from studies of patients selected because of symptoms or specifically referred for investigation. To determine whether such associations occur in nonreferred and unselected women with mitral valve prolapse, we measured blood pressure, heart rate, and norepinephrine response to standing in 13 volunteers with mitral valve prolapse and in 11 control subjects. Platelet alpha-adrenergic receptor quantity and affinity on standing also were determined in all persons. No significant differences were found between the groups in any of these measurements. Although small subsets of women with mitral valve prolapse may indeed have associated neuroendocrine epiphenomena and autonomic dysfunction, it is probably incorrect to generalize these findings to the vast spectrum of those with mitral valve prolapse.  相似文献   

6.
1. This paper describes the changes in the activity of adenylate deaminase, adenylate and inosinate phosphatase, and adenosine deaminase in the developing chick embryo liver. 2. The adenylate and inosinate phosphatase and adenosine deaminase activity appears considerably higher in chick embryo liver with respect to other chick embryo tissues previously examined. 3. During development the control exerted by ATP on AMP breakdown undergoes variations. Consequently, in the first period of incubation AMP is degraded by the direct pathway (AMP-IMP) and in the last period of incubation by the indirect pathway (AMP-adenosine). In the intermediate period (from the 12th to the 15th day of incubation) both pathways may be followed. 4. The ability to synthesize purine nucleotides through "salvage pathway" seems to be acquired by embryonic liver at least at the 15th day.  相似文献   

7.
Clement Ip 《Life sciences》1984,34(25):2501-2506
The present study was designed to examine changes in glutathione metabolism in the liver of mice as influenced by supplementation of their diet with 1 of 4 antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), vitamin E and selenium. In addition to determination of the acid-soluble thiol levels, 5 different enzymes involved with glutathione utilization and synthesis were measured: glutathione transferase, γ-glutamyl transpeptidase, selenium-dependent glutathione peroxidase, γ-glutamylcysteine synthetase and glutathione reductase. All 4 antioxidants produced significant increases in glutathione transferase activity, with BHA and BHT being much more effective than the other two. With the exception of vitamin E, BHA, BHT and selenium all resulted in a slight enhancement in the activity of glutathione reductase as well as in the acid-soluble thiol level. On the other hand, the induction of γ-glutamyl transpeptidase and γ-glutamylcysteine synthetase was responsive to only vitamin E and selenium supplementation, respectively. Although the influence of each of these antioxidants in glutathione metabolism appears to be specific and somewhat compartmentalized, the overall impression is that of an increased capacity for glutathione-conjugate formation and recovery of reduced glutathione. These biochemical changes in glutathione metabolism may be relevant to the anticarcinogenic effects observed with BHA, BHT and selenium.  相似文献   

8.
This study examines the effects of MPA (medroxyprogesterone acetate) on some of the hepatic enzymes of carbohydrate and lipid metabolism in the rat, and compares these with the effects of cortisol and saline. Levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH) were also measured. Intact mature female Wistar rats with average initial weight of 200 gms were injected with MPA (mO mg/kg IM) once a week for 4 weeks and were sacrificed 3 to 5 days after the last injection. Hydrocortisone (Solu-Cortef [R]) 40 mg/kg IM were given to cortisol-treated animals twice daily for 7 days. The animals were sacrificed 2-4 hours after the last dose was given. Normal saline (0.2 mg. IM) was injected in control animals twice a day. The method of Jellinek, Amako, and Willman was used to analyze NADPH. Liver samples were assayed for various enzymatic activities such as phophofructokinase (PFK); pyruvate kinase (PK), glycerol-3-phosphate dehydrogenase (G3PD), "malic" enzyme (ME), and glucose-6-phosphate dehydrogenase (G6PD). The methods of Colowick and Kaplan were used in enzymatic analyses. Lipogenic stimulation by MPA is indicated by increased levels of G3PD and ME, both of which are implicated in lipogenesis, as well as by NADPH. PFK, PK, and G6PD were all unaffected by the MPA regimen, suggesting that elevation of ME and NADPH activities may reflect increased amino acid conservation. The enzymatic pattern of MPA treatment shows lipogenesis and protein conservation, while that of cortisol regimen shows significantly lower levels of ME, G3PD, and PRK.  相似文献   

9.
Hepatocytes isolated from normal and cholestatic rats responded to adrenergic agonists and antagonists in a quite different manner. Much greater activation of glycogen phosphorylase was caused by phenylephrine, an alpha-agonist, than by isoproterenol, a beta-agonist, in normal rat hepatocytes, and vice versa in the cholestatic rat cells. Epinephrine activation of phosphorylase was antagonized more efficiently by phenoxybenzamine, an alpha-antagonist, than by propranolol, a beta-antagonist, in normal rats, whereas it was antagonized totally by propranolol but only partially by phenoxybenzamine in cholestatic rat hepatocytes. The number of alpha-adrenergic receptors, measured by [3H]prazosin binding to membranes, as well as alpha-receptor-mediated increases in 32Pi incorporation into phosphatidylinositol and in 45Ca efflux, were reduced in hepatocytes after induction of cholestasis. The reduction of these parameters of alpha-receptor-linked functions was associated with the reciprocal increase in the number of beta-receptors and enhancement of beta-receptor-mediated accumulation of cyclic AMP in cholestatic rat hepatocytes. The affinity of epinephrine for beta-receptors was higher in cholestatic rat cells than in normal rat cells; this difference in affinity was abolished by the addition of guanylylimidodiphosphate, indicating that induction of cholestasis rendered hepatic beta-receptors more tightly coupled to the GTP-binding protein. Thus, the cascade reactions arising from beta-receptors are predominant over those from alpha-receptors, eventually leading to glycogen breakdown in cholestatic rat hepatocytes, principally because of not only the elevated beta to alpha ratio of the membrane receptor density but also the tight coupling of beta-receptors to the adenylate cyclase system via the guanine nucleotide regulatory protein.  相似文献   

10.
11.
12.
13.
Mechanisms involved in cartilage proteoglycan catabolism.   总被引:19,自引:0,他引:19  
The increased catabolism of the cartilage proteoglycan aggrecan is a principal pathological process which leads to the degeneration of articular cartilage in arthritic joint diseases. The consequent loss of sulphated glycosaminoglycans, which are intrinsic components of the aggrecan molecule, compromises both the functional and structural integrity of the cartilage matrix and ultimately renders the tissue incapable of resisting the compressive loads applied during joint articulation. Over time, this process leads to irreversible cartilage erosion. In situ degradation of aggrecan is a proteolytic process involving cleavage at specific peptide bonds located within the core protein. The most well characterised enzymatic activities contributing to this process are engendered by zinc-dependent metalloproteinases. In vitro aggrecanolysis by matrix metalloproteinases (MMPs) has been widely studied; however, it is now well recognised that the principal proteinases responsible for aggrecan degradation in situ in articular cartilage are the aggrecanases, two recently identified isoforms of which are members of the 'A Disintegrin And Metalloproteinase with Thrombospondin motifs' (ADAMTS) gene family. In this review we have described: (i) the development of monoclonal antibody technologies to identify catabolic neoepitopes on aggrecan degradation products; (ii) the use of such neoepitope antibodies in studies designed to characterise and identify the enzymes responsible for cartilage aggrecan metabolism; (iii) the biochemical properties of soluble cartilage aggrecanase(s) and their differential expression in situ; and (iv) model culture systems for studying cartilage aggrecan catabolism. These studies have clearly established that 'aggrecanase(s)' is primarily responsible for the catabolism and loss of aggrecan from articular cartilage in the early stages of arthritic joint diseases that precede overt collagen catabolism and disruption of the tissue integrity. At later stages, when collagen catabolism is occurring, there is evidence for MMP-mediated degradation of the small proportion of aggrecan remaining in the tissue, but this occurs independently of continued aggrecanase activity. Furthermore, the catabolism of link proteins by MMPs is also initiated when overt collagen degradation is evident.  相似文献   

14.
15.
P Merouze  Y Gaudemer 《Biochimie》1975,57(6-7):797-802
1. The influence of catecholamines (adrenaline and noradrenaline) on energy metabolism of the rat myocardium has been studied by incubating slices of this tissue with these hormones and by following the levels of the different phosphorylated fractions and adenylic nucleotides. 2. Similar effects are obtained with both hormones, adrenaline being more effective. 3. Catecholamines decrease significantly the total amount of phosphate while Pi content increases during the first 10 minutes of incubation; labile and residual phosphate contents increase at the beginning of incubation and decrease to the initial values afterwards. 4. ATP and ADP levels decrease significantly with both hormones; however, the effect of noradrenalin on the ATP level needs a longer time of incubation. The ATP/ADP ratios decrease after 5 minutes incubation and the total adenylic nucleotide content is severely decreased (35 per cent with adrenalin, after 20 minutes incubation). 5. Similar results have been obtained with other tissues; these results can explain the decrease of aerobic metabolism we observed under the same conditions.  相似文献   

16.
Lithium's effects on rat liver glucose metabolism in vivo   总被引:3,自引:0,他引:3  
Oral administration of lithium carbonate to fed-healthy rats strongly decreased liver glycogen content, despite the simultaneous activation of glycogen synthase and the inactivation of glycogen phosphorylase. The effect seemed to be related to a decrease in glucose 6-phosphate concentration and to a decrease in glucokinase activity. Moreover, in these animals lithium markedly decreased liver fructose 2,6-bisphosphate, which could be a consequence of the fall in glucose 6-phosphate and of the inactivation of 6-phosphofructo-2-kinase. Liver pyruvate kinase activity and blood insulin also decreased after lithium administration. Lower doses of lithium carbonate had less intense effects. Lithium administration to starved-healthy and fed-streptozotocin-diabetic rats caused a slight increase in blood insulin, which was simultaneous with increases in liver glycogen, glucose 6-phosphate, and fructose 2, 6-phosphate. Glucokinase, 6-phosphofructo-2-kinase, and pyruvate kinase activities also increased after lithium administration in starved-healthy and fed-diabetic rats. Lithium treatment activated glycogen synthase and inactivated glycogen phosphorylase in a manner similar to that observed in fed-healthy rats. Glycemia was not modified in any group of animals. These results indicate that lithium acts on liver glycogen metabolism in vivo in at least two different ways: one related to changes in insulinemia, and the other related to the direct action of lithium on the activity of some key enzymes of liver glucose metabolism.  相似文献   

17.
18.
This study was performed to investigate the effects of the essential oil obtained from fruits of Ferulago campestris (FC) on primary calvarial mouse osteoblasts (COBs). The composition of the oil was dominated by monoterpene hydrocarbons (78.8-80.3%), with myrcene (33.4-39.7%), α-pinene (22.7-23.0%), and γ-terpinene (8.1-10.9%) as the major components. Owing to their lipophilic properties, these compounds easily cross cell membranes and affect bone cell function by stimulating or inhibiting specific molecular pathways. We demonstrated, for the first time, that FC oil increased osteoblast proliferation by MAP kinase activation; in addition, oils enhanced the protein kinase AKT, which is known to be critical for control of cell survival, also in presence of the MEK-1 inhibitor PD98059, and this effect was accompanied with a down-regulation of pro-apototic molecules such as Bax and caspases. Interestingly, FC oil significantly increased Runx2 (Runx2/Pebp2αA/AML3) and phospho-Smad1/5/8 protein level, the master regulators of osteoblast differentiation, and their nuclear localization. PD98059 pre-treatment further improved Runx2/phospho-Smads up-regulation. Thus, FC oils influence osteoblast metabolism probably using alternative signaling pathways depending also on the maturation stage of the cells. Taken together our data delineate a positive function of FC oil on osteoblast metabolism, suggesting its possible use as a dietetic integrator in the prevention or in the therapy of pathologies due to impaired bone remodeling.  相似文献   

19.
The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of 14CO2 from infused [1-14C] pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Also, phenylephrine caused no significant effect on tissue NADH/NAD+ and acetyl-CoA/CoASH ratios or on the kinetics of pyruvate decarboxylation in 14CO2 washout experiments. Phenylephrine inhibition of [1-14C]pyruvate decarboxylation was, however, closely associated with a decrease in the specific radioactivity of perfusate lactate, suggesting that the pyruvate decarboxylation response simply reflected dilution of the labeled pyruvate pool due to phenylephrine-stimulated glycogenolysis. This suggestion was confirmed in additional experiments which showed that the alpha-adrenergic-mediated inhibitory effect on pyruvate decarboxylation was reduced in livers perfused with a high concentration of pyruvate (1 mM) and was absent in livers from starved rats. Thus, alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.  相似文献   

20.
Addition of 10 micron of the alpha-adrenergic agonist phenylephrine to polymorphonuclear leukocytes suspended in glucose-free Krebs-Ringer bicarbonate buffer (pH 6.7) activated phosphorylase, inactivated glycogen synthase R maximally within 30 s, and resulted in glycogen breakdown. Phenylephrine increased 45Ca efflux relative to control of 45Ca prelabelled cells, but did not affect cyclic adenosine 3',5'-monophosphate (cAMP) concentration. The effects of phenylephrine were blocked by 20 micron phentolamine and were absent in cells incubated at pH 7.4. The same unexplained dependency of extracellular pH was observed with 2.5 nM--2.5 micron glucagon, which activated phosphorylase and inactivated synthase-R, but in addition caused a 30-s burst in cAMP formation. 25 nM glucagon also increased 45Ca efflux. The activation of phosphorylase by phenylephrine and possibly also by glucagon are thought mediated by an increased concentration of cytosolic Ca2+ activating phosphorylase kinase. The effects of 5 micron isoproterenol or 5 micron epinephrine were independent of extracellular pH 6.7 and 7.4 and resulted in a sustained increase in cAMP, an activation of phosphorylase and inactivation of synthase-R within 15 s, and in glycogenolysis. The effects of both compounds were blocked by 10 micron propranolol, whereas 10 micron phentolamine had no effect on the epinephrine action. The efflux of 45Ca was not affected by either isoproterenol or epinephrine. The beta-adrenergic activation of phosphorylase is consistent with the assumption of a covalent modification of phosphorylase kinase by the cAMP dependent protein kinase. Phosphorylation of synthase-R to synthase-D can thus occur independently of increase in cAMP, but the evidence is inconclusive with respect to the cAMP dependent protein kinase also being active in this phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号