首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes are the most numerous cell type within the central nervous system. Earlier, high-affinity binding sites for [3H]PK 11195 and [3H]Ro 5-4864 with the properties of the peripheral-type benzodiazepine receptor were detected in primary cultures of astrocytes. TSPO/PBR was shown to be localized in mitochondria. Recently, we showed that TSPO/PBR ligands, Ro 5-4864 and PK11195, were able to modulate the function of non-specific pore (PTP) in brain and liver mitochondria as well as protein phosphorylation in the presence of threshold calcium concentrations. In the present study for the first time the function of astrocyte mitochondria were studied under condition of PTP opening. Parameters of PTP induction were measured by means of simultaneous registrations of the membrane potential, calcium accumulation and calcium release as well as detection of the oxygen consumption with selective electrodes. Four phosphorylated proteins in range of 67 kDa, 46 kDa, 48 kDa and 3.5 kDa have been found under these conditions. It was established that in astrocyte mitochondria TSPO/PBR exists in monomer form (18 kDa). The phosphorylation level of these proteins was found to be modulated by TSPO/PBR ligands, Ro 5-4864 and PK11195, in a range of concentrations from 0.01 to 1 μM, in the same way as it was earlier described for brain mitochondria [Azarashvili et al., J Neurochem., 2005].  相似文献   

2.
The effects of PK11195, a high-affinity peripheral benzodiazepine receptor (PBR) ligand, on protein phosphorylation in isolated purified rat brain mitochondria were investigated. The isoquinoline carboxamide ligand of PBR, PK11195, but not the benzodiazepine ligand Ro5-4864, in the nanomolar concentration range strongly increased the phosphorylation of 3.5 and 17 kDa polypeptides. The effect of PK11195 was seen in the presence of elevated Ca(2+) levels (3 x 10(-7) to 10(-6) m), but not at very low Ca(2+) levels (10(-8) to 3 x 10(-8) m). This indicates that PBR involves Ca(2+) as a second messenger in the regulation of protein phosphorylation. Staurosporine, an inhibitor of protein kinase activity was able to suppress the PK11195-promoted protein phosphorylation. When the permeability transition pore (PTP) was opened by threshold Ca(2+) load, phosphorylation of the 3.5-kDa polypeptide was diminished, but strong phosphorylation of the 43-kDa protein was revealed. The 43-kDa protein appears to be a PTP-specific phosphoprotein. If PTP was opened, PK11195 did not increase the phosphorylation of the 3.5 and 17-kDa proteins but suppressed the phosphorylation of the PTP-specific 43-kDa phosphoprotein. The ability of PK11195 to increase the protein phosphorylation, which was lost under Ca(2+)-induced PTP opening, was restored again in the presence of calmidazolium, an antagonist of calmodulin and inhibitor of protein phosphatase PP2B. These results show a tight interaction of PBR with the PTP complex in rat brain mitochondria. In conclusion, a novel function of PBR in brain mitochondria has been revealed, and the PBR-mediated protein phosphorylation has to be considered an important element of the PBR-associated signal transducing cascades in mitochondria and cells.  相似文献   

3.
The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response.  相似文献   

4.
The outer mitochondrial membrane (OMM) protein, the translocator protein 18 kDa (TSPO), formerly named the peripheral benzodiazepine receptor (PBR), has been proposed to participate in the pathogenesis of neurodegenerative diseases. To clarify the TSPO function, we identified the Drosophila homolog, CG2789/dTSPO, and studied the effects of its inactivation by P‐element insertion, RNAi knockdown, and inhibition by ligands (PK11195, Ro5‐4864). Inhibition of dTSPO inhibited wing disk apoptosis in response to γ‐irradiation or H2O2 exposure, as well as extended male fly lifespan and inhibited Aβ42‐induced neurodegeneration in association with decreased caspase activation. Therefore, dTSPO is an essential mediator of apoptosis in Drosophila and plays a central role in controlling longevity and neurodegenerative disease, making it a promising drug target.  相似文献   

5.
Background information. TSPO (translocator protein), previously known as PBR (peripheral‐type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High‐affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium‐dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. Results. Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam‐binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, 3H‐labelled PK 11195, as shown by Bmax and Kd values of 10.0±0.5 pmol/mg and 4.0±1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and α‐adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K+, Na+, Cl and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. Conclusions. High‐affinity ligand binding to mitochondrial TSPO modulates neurotransmitter‐induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

6.
Background information. TSPO (translocator protein), known previously as PBR (peripheral‐type benzodiazepine receptor), is a 18 kDa protein expressed in the mitochondrial membrane of a variety of tissues. TSPO has been reported to be over‐expressed in human colorectal tumours and cancer cell lines, but its function is not well characterized. Results. We investigated the expression and function of TSPO in the human colon cancer cells HT‐29. Immunohistochemical studies revealed that TSPO is localized in mitochondria, and its endogenous ligand, the polypeptide diazepam‐binding inhibitor, in the cytosol. Radioligand binding studies using the specific high‐affinity drug ligand [3H]PK 11195 and membrane fraction demonstrated saturable binding, with Kd and Bmax values of 13.5±1.5 nM and 10.1±1.0 pmol/mg respectively. PK 11195 induced a rapid and transient dose‐dependent rise in intracellular [Ca2+], which was unaffected by extracellular Ca2+, but was blocked by the PTP (permeability transition pore) inhibitor, cyclosporin A, and by the TSPO partial agonist, flunitrazepam. Using HT‐29 clone 19A cell line, which forms cell monolayers, we demonstrated that TSPO ligand stimulated a Ca2+‐dependent transepithelial Cl? secretion. This secretion was inhibited: (i) after removal of extracellular Cl?; (ii) by apical addition of the Cl? channel blocker NPPB [5‐nitro‐2‐(3‐phenylpropylamino)‐benzoate]; and (iii) by basolateral addition of the Na+–K+–2Cl? co‐transporter inhibitor bumetanide. Furthermore, the intracellular Ca2+ chelator BAPTA/AM [bis‐(o‐aminophenoxy)ethane‐N,N,N′,N′‐tetra‐acetic acid tetrakis(acetoxymethyl ester)] and cyclosporin A abolished the rise in PK 11195‐induced Cl? secretion. Conclusions. These findings indicate that TSPO is located in mitochondrial membranes of HT‐29 and reveal that its activation induces a rise in cytosolic Ca2+, leading to the stimulation of Cl? secretion.  相似文献   

7.
A phosphorylated polypeptide (ScIRP) from the inner membrane of rat liver mitochondria with an apparent molecular mass of 3.5 kDa was found to be immunoreactive with specific antibodies against subunit c of F0F1-ATPase/ATP synthase (Azarashvily, T. S., Tyynelä, J., Baumann, M., Evtodienko, Yu. V., and Saris, N.-E. L. (2000). Biochem. Biophys. Res. Commun. 270, 741–744. In the present paper we show that the dephosphorylation of ScIRP was promoted by the Ca2+-induced mitochondrial permeability transition (MPT) and prevented by cyclosporin A. Preincubation of ScIRP isolated in its dephosphorylated form with the mitochondrial suspension decreased the membrane potential (M) and the Ca2+-uptake capacity by promoting MPT. Incorporation of ScIRP into black-lipid membranes increased the membrane conductivity by inducing channel formation that was also suppressed by antibodies to subunit c. These data indicate that the phosphorylation level of ScIRP is influenced by the MPT pore state, presumably by stimulation of calcineurin phosphatase by the Ca2+ used to induce MPT. The possibility of ScIRP being part of the MPT pore assembly is discussed in view of its capability to induced channel activity.  相似文献   

8.
Background information. The TSPO (18 kDa translocator protein) is a mitochondrial transmembrane protein involved in cholesterol transport in organs that synthesize steroids and bile salts. Different natural and synthetic high‐affinity TSPO ligands have been characterized through their ability to stimulate cholesterol transport, but also to stimulate other physiological functions including cell proliferation, apoptosis and calcium‐dependent transepithelial ion secretion. Here, we investigate the localization and functions of TSPO in the small intestine. Results. TSPO was present in enterocyte mitochondria but not in rat intestinal goblet cells. Enterocyte cytoplasm also contained the endogenous TSPO ligand, polypeptide DBI (diazepam‐binding inhibitor). Whereas intestinal TSPO had high affinity for the synthetic ligand PK 11195, the pharmacological profile of TSPO in the duodenum was distinct from the jejunum and ileum. Specifically, benzodiazepine Ro5‐4864 and protoporphyrin IX showed 5–13‐fold lower affinity for duodenal TSPO. The mRNA and protein ratios of TSPO to other mitochondrial membrane proteins VDAC (voltage‐dependent anion channel) and ANT (adenine nucleotide transporter) were significantly different. PK 11195 stimulated calcium‐dependent chloride secretion in the duodenum and calcium‐dependent chloride absorption in the ileum, but did not affect jejunum ion transport. Conclusions. The functional differences in subpopulations of TSPO in different regions of the intestine could be related to structural organization of mitochondrial protein complexes that mediate the ability of TSPO to modulate either chloride secretion or absorption in the duodenum and ileum respectively.  相似文献   

9.
The permeability transition pore (PTP) is central for apoptosis by acting as a good candidate pathway for the release of Cyt. c and apoptosis induction factors (AIF). Arsenite induces apoptosis via a direct effect on PTP. To characterize the exact mechanism for arsenite induces PTP opening, the effect of Ca2+ on As2O3-induced PTP opening, the relationship between As2O3-induced PTP opening and Cyt. c release from mitochondria and calcium-induced calcium release from mitochondria (mCICR), and the effects of As2O3 on Ca2+-induced PTP opening were studied. The results showed As2O3 induces Cyt. c release by triggering PTP opening. Ca2+ is necessary for As2O3-induced PTP opening. As2O3-induced PTP opening and Cyt. c release depends on mCICR. As2O3 promotes PTP opening by lowering Ca2+-threshold. These results indicated As2O3 induce Cyt. c release from mitochondria by lowering Ca2+-threshold for PTP and triggering mCICR-dependent PTP opening. Suggesting that it is possible to control apoptosis by altering Ca2+ threshold and mCICR to modulate PTP opening and Cyt. c release.  相似文献   

10.
In several pathological conditions, when conversion of Protoporphyrin (PP)IX into heme is impaired, a toxic accumulation of PPIX might occur. PPIX has been found to have affinity to the mitochondrial Translocator Protein 18 kDa. Since it is known that TSPO is abundant in human osteoblast cells, thus we assumed that PPIX can affect cellular functions via interactions with TSPO in these cells. Therefore we aimed to study the metabolic responses of human osteoblast to a high (10?5M) concentration of PPIX in vitro. We found that in primary culture of human osteoblast-like cells cell numbers decreased following exposure to PPIX(10?5M). Cellular [18F]-FDG incorporation, mitochondrial mass, ATP content were suppressed, and ΔΨm collapsed. Lactate dehydrogenase activity was enhanced in culture media, indicating overall cell death, while no increase in apoptotic levels was observed. Cellular proliferation was not affected. Protein expression of TSPO, VDAC 1, and hexokinase 2 decreased, although the synthesis of mRNA for hexokinase 2 increased. Thus, PPIX(10?5M) has a cytotoxic effect on human osteoblast-like cell in vitro. Since these cells remain viable following exposure to another TSPO ligand, PK 11195 (10?5M), as observed previously by us, the mode of action of PPIX on osteoblast-like cells is not identical to that of PK 11195. Accordingly pathological accumulation of PPIX may cause necrosis of osteoblasts leading to bone mass loss. We show that this phenomenon is unrelated to iron overload.  相似文献   

11.
F0F1ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto–F0F1ATPsynthase binds apoA–I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF1 was shown to regulate the hydrolytic activity of ecto–F0F1ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF1, calmodulin (CaM), OSCP and β subunits of F0F1ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF1 is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca2+–CaM, OSCP and β. Confocal microscopy showed that IF1 colocalized with Ca2+–CaM on plasma membrane but not in mitochondria, suggesting that Ca2+–CaM may modulate the cell surface availability of IF1 and thus its ability to inhibit ATP hydrolysis by ecto–F0F1ATPsynthase. These observations support a hypothesis that the IF1–Ca2+–CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.  相似文献   

12.
The integral polytopic membrane protein TSPO is the target for numerous endogenous and synthetic ligands. However, the affinity of many ligands is influenced by a common polymorphism in TSPO, in which an alanine at position 147 is replaced by threonine, thereby complicating the use of several radioligands for clinical diagnosis. In contrast, the best-characterized TSPO ligand (R)-PK11195 binds with similar affinity to both variants of mitochondrial TSPO (wild-type and A147T variant). Here we report the 1H, 13C, 15N backbone and side-chain resonance assignment of the A147T polymorph of TSPO from Mus Musculus in complex with (R)-PK11195 in DPC detergent micelles. More than 90 % of all resonances were sequence-specifically assigned, demonstrating the ability to obtain high-quality spectral data for both the backbone and the side-chains of medically relevant integral membrane proteins.  相似文献   

13.
In an earlier study, we showed that mitochondria hyperpolarized after short periods of oxygen-glucose deprivation (OGD), and this response appeared to be associated with subsequent apoptosis or survival. Here, we demonstrated that hyperpolarization following short periods of OGD (30 min; 30OGD group) increased the cytosolic Ca2+ ([Ca2+]c) buffering capacity in mitochondria. After graded OGD (0 min (control), 30 min, 120 min), rat cultured hippocampal neurons were exposed to glutamate, evoking Ca2+influx. The [Ca2+]c level increased sharply, followed by a rapid increase in mitochondrial Ca2+ [Ca2+]m. The increase in the [Ca2+]m level accompanied a reduction in the [Ca2+]c level. After reaching a peak, the [Ca2+]c level decreased more rapidly in the 30OGD group than in the control group. This buffering reaction was pronounced in the 30OGD group, but not in the 120OGD group. The enhanced buffering capacity of the mitochondria may be linked to preconditioning after short-term ischemic episodes.  相似文献   

14.
Summary. We have examined the effects of midazolam, Ro 5-4864 (agonist for peripheral [p] benzodiazepine receptors [BR]), PK 11195 (antagonist for pBR), flumazenil (antagonist for central BR), naloxone (antagonist for opiate receptors) and the combination of midazolam and Ro 5-4864, PK 11195, flumazenil or naloxone on intracellular amino- and -keto acids and the immune function markers superoxide anion (O2), hydrogen peroxide (H2O2) and released myeloperoxidase (MPO) activity in neutrophils (PMN). Only midazolam and Ro 5-4864 led to significant changes in the dynamic PMN free amino- and -keto acid pools. Concerning PMN immune function markers, midazolam and Ro 5-4864 significantly decreased O2 and H2O2 formation and released MPO. When midazolam and Ro 5-4864 were applied together they appeared to act additively. Pre-incubation with PK 11195 partially neutralized the midazolam effects whereas flumazenil or naloxone showed no effects. We therefore believe that pBR are involved in the signal transmission of anesthetic-induced cellular metabolic changes in PMN.  相似文献   

15.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

16.
ATP synthases, widely distributed in bacteria, eukaryotic mitochondria and chloroplasts, are highly conserved multi-subunit complexes. Although the conserved acidic residue in the transmembrane helix of the c subunit functions in H+ transport, the surrounding residues differ among species. Such divergence could lead to different regulatory modes since pH-dependent H+ transport has been demonstrated in E. coli with a c subunit carrying an additional acidic residue in the helix. There is further divergence in the number of c subunits that form the ring structure which is determined by the higher ordered structure. Recently, it was suggested that certain chemicals recognize the a and c subunits of pathogenic bacterial F0. Since there may be structural divergence even in well-conserved ATP synthases, the c subunit-ring as well as the a subunit in F0 could be targets for drugs for specific bacterial species.  相似文献   

17.
The mitochondrial peripheral benzodiazepine receptor (PBR) is involved in a functional structure designated as the mitochondrial permeability transition (MPT) pore, which controls apoptosis. PBR expression in nervous system has been reported in glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand fluo-FGIN-1-27 in mitochondria of rat cerebellar granule cells (CGCs). Additionally, the effect of PBR ligands on colchicine-induced apoptosis was investigated. Colchicine-induced neurotoxicity in CGCs was measured at 24 h. We show that, in vitro, PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4- benzodiazepin-2-one (Ro5-4864) and diazepam (25– 50 M) enhanced apoptosis induced by colchicine, as demonstrated by viability experiments, flow cytometry and nuclear chromatin condensation. Enhancement of colchicine-induced apoptosis was characterized by an increase in mitochondrial release of cytochrome c and AIF proteins and an enhanced activation of caspase-3, suggesting mitochondrion dependent mechanism that is involved in apoptotic process. Our results indicate that exposure of neural cells to PBR ligands generates an amplification of apoptotic process induced by colchicine and that the MPT pore may be involved in this process.  相似文献   

18.
Cytochromes c were found in the cells of the bacterium Geobacter sulfurreducens AM-1 grown on acetate and methacrylate. The periplasmic extract of G. sulfurreducens AM-1 contained about 88% of the total content of cytochromes c of intact cells. The analysis of cytochromes c from the native cells of G. sulfurreducens AM-1, from the periplasmic extract and from the cells treated by an alkaline solution showed the presence of nine proteins containing heme c. The molecular masses of cytochromes c from G. sulfurreducens AM-1 were 12.5, 15.5, 25.7, 29.5, 34.7, 41.7, 50.1, 63.1, and 67.6 kDa; localization of each cytochrome c was determined. Three heme-containing proteins (15.5 kDa, 25.7 kDa, and 29.5 kDa with the most intensive staining) were present mainly in the periplasm of the bacterium. The other two (50.1 and 67.6 kDa) were supposedly localized in the cell membrane. Cytochromes c with the molecular masses of 12.5, 15.5, and 67.6 kDa are considered as possible components of the methacrylate redox system of G. sulfurreducens AM-1.  相似文献   

19.
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F0F1ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F0F1ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F0F1ATPsynthase regulation by the inhibitory protein IF1 in heart preconditioning strategies; ii) the structure and function of mitochondrial F0F1ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F0F1 ATP synthase in search for possible actors of its regulation, such as IF1 and calmodulin, at cell surface.  相似文献   

20.
Many agonists bring about their effects on cellular functions through a rise incytosolic [Ca2+]([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studiesof single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporalorganization that is established by coordinated activation of IP3 receptor Ca2+ channels.Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors areefficiently transmitted to the mitochondria. An important function of mitochondrial calciumsignals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meetdemands for increased energy in stimulated cells. Activation of the permeability transitionpore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death.Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organizationof [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calciumsignaling as well. This paper summarizes recent research to elucidate the mechanisms andsignificance of IP3-dependent mitochondrial calcium signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号