首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atypical adenomatous hyperplasia (AAH) of the lung is a pre-invasive lesion (PL) with high risk of progression to lung cancer (LC). However, the pathways involved are uncertain. We searched for novel mechanistic biomarkers of AAH in an EGF transgenic disease model of lung cancer. Disease regulated proteins were validated by Western immunoblotting and immunohistochemistry (IHC) of control and morphologically altered respiratory epithelium. Translational work involved clinical resection material. Collectively, 68 unique serum proteins were identified by 2DE-MALDI-TOF mass spectrometry and 13 reached statistical significance (p?<?0.05). EGF, amphiregulin and the EGFR endosomal sorting protein VPS28 were induced up to 5-fold while IHC confirmed strong induction of these proteins. Furthermore, ApoA1, α-2-macroglobulin, and vitamin-D binding protein were nearly 6- and 2-fold upregulated in AAH; however, ApoA1 was oppositely regulated in LC to evidence disease stage dependent regulation of this tumour suppressor. Conversely, plasminogen and transthyretin were highly significantly repressed by 3- and 20-fold. IHC confirmed induced ApoA1, Fetuin-B and transthyretin expression to influence calcification, inflammation and tumour-infiltrating macrophages. Moreover, serum ApoA4, ApoH and ApoM were 2-, 2- and 6-fold repressed; however tissue ApoM and sphingosine-1-phosphate receptor expression was markedly induced to suggest a critical role of sphingosine-1-phosphate signalling in PL and malignant transformation. Finally, a comparison of three different LC models revealed common and unique serum biomarkers mechanistically linked to EGFR, cMyc and cRaf signalling. Their validation by IHC on clinical resection material established relevance for distinct human lung pathologies. In conclusion, we identified mechanistic biomarker candidates recommended for in-depth clinical evaluation.  相似文献   

2.
Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.  相似文献   

3.
Detection of lung cancer at an early stage is necessary for successful therapy and improved survival rates. We performed a bottom-up proteomics analysis using a two-dimensional LC-MS/MS strategy on the conditioned media of four lung cancer cell lines of different histological backgrounds (non-small cell lung cancer: H23 (adenocarcinoma), H520 (squamous cell carcinoma), and H460 (large cell carcinoma); small cell lung cancer: H1688) to identify secreted or membrane-bound proteins that could be useful as novel lung cancer biomarkers. Proteomics analysis of the four conditioned media allowed identification of 1,830 different proteins (965, 871, 726, and 847 from H1688, H23, H460, and H520, respectively). All proteins were assigned a subcellular localization, and 38% were classified as extracellular or membrane-bound. We successfully identified the internal control proteins (also detected by ELISA), kallikrein-related peptidases 14 and 11, and IGFBP2. We also identified known or putative lung cancer tumor markers such as squamous cell carcinoma antigen, carcinoembryonic antigen, chromogranin A, creatine kinase BB, progastrin-releasing peptide, neural cell adhesion molecule, and tumor M2-PK. To select the most promising candidates for validation, we performed tissue specificity assays, functional classifications, literature searches for association to cancer, and a comparison of our proteome with the proteome of lung-related diseases and serum. Five novel lung cancer candidates, ADAM-17, osteoprotegerin, pentraxin 3, follistatin, and tumor necrosis factor receptor superfamily member 1A were preliminarily validated in the serum of patients with lung cancer and healthy controls. Our results demonstrate the utility of this cell culture proteomics approach to identify secreted and shed proteins that are potentially useful as serological markers for lung cancer.Lung cancer is the leading cause of cancer-related mortality worldwide in both men and women. An estimated 213,000 news cases and 160,000 deaths from lung cancer occur in the United States every year (National Cancer Institute). According to the World Health Organization, lung cancers are largely classified into two histologically distinct types, based on the size and appearance of the malignant cells: small cell (SCLC)1 and non-small cell lung cancer (NSCLC). NSCLC, which comprises more than 80% of lung cancers, can be further divided into adenocarcinoma, squamous cell carcinoma, and large cell carcinoma.Despite advances in treatments such as surgery, chemotherapy, and radiotherapy, the clinical outcome for patients with lung cancer still remains poor. The overall 5-year survival rate is only 10–15% (1) mainly because, at the time of diagnosis, most lung cancer patients are at advanced stages. In this context, there is a critical need to detect lung cancer earlier by improving the current diagnostic methods such as computed tomography and chest x-ray and by discovering useful diagnostic and prognostic biomarkers. To date, a number of serum biomarkers for lung cancer have been studied, including CEA, squamous cell carcinoma (SCC)-Ag, neuron-specific enolase, tissue polypeptide antigen, CYFRA21-1 (cytokeratin 19 fragment), and pro-GRP. They are elevated in serum of patients with lung cancer, but they are not sensitive or specific enough, alone or in combination, to reliably diagnose asymptomatic patients with lung cancer.Recently, new approaches in clinical proteomics have been developed to identify novel biomarkers of lung pathology (COPD, asthma, pleural effusion, and cancer) and to gain insights into disease mechanisms in which proteins play a major role. Some proteomics analyses of various biological fluids associated with the human airway have been reported, including nasal lavage fluid (24), bronchoalveolar lavage fluid (5, 6), and saliva (7, 8). By using a combination of 2DE analysis and Gel electrophoresis coupled with LC-MS/MS, Nicholas et al. (9) identified 258 proteins in human sputum, and among them, 191 were of human origin. Proteins included lower and upper airway secretory products, cellular products, and inflammatory cell-derived products. In addition, Casado et al. (10) used capillary column LC-ESI-Q/TOF-MS to investigate the proteome profiles of hypertonic saline-induced sputum samples from healthy smokers and patients with COPD of different severity. A total of 203 unique proteins were identified of which some may be markers of COPD severity. The proteomics profile of human pleural effusion from 43 lung adenocarcinoma was also studied using a 2D nano-HPLC-ESI-MS/MS system (11). The results revealed 1,415 unique proteins of which 124 were identified with higher confidence (at least two unique peptide sequences matched). However, there are inherent limitations of using MS for biomarker discovery in complex biological mixtures such as fluids or serum (12, 13), requiring methodologies for depletion of high abundance proteins such as albumin and immunoglobulins. These limitations illustrate the need to find other sources to mine for biomarker discovery.One approach to overcome this limitation posed by complex mixtures is by using a cell culture model, in which cells are grown in serum-free medium, to perform proteomics analysis. This model offers various advantages over the traditional cultures in serum-supplemented medium: it reduces complexity by avoiding interferences from nutritional proteins present in the medium, increases the reproducibility, and allows detection of low abundance proteins. This strategy has been successfully used in our laboratory for the discovery of novel breast and prostate biomarkers (14, 15). This technique was also reported in lung-related proteomics approaches. Tachibana et al. (16) reported the regulatory roles of β1 integrin in morphological differentiation in CADO LC6 cells, an SCLC cell line cultured in serum-free medium. To explore serum biomarkers of lung cancer at early stage, M-BE, an SV40T-transformed human bronchial epithelial cell line with the phenotypic features of early tumorigenesis at high passage, was cultured, and the conditioned medium was used to collect its secretory proteins (17). Proteins secreted from different passages of M-BE cells were extracted and then separated by 2DE followed by MALDI-TOF/TOF mass spectrometry. The authors identified 47 proteins, including cathepsin D, that exhibited increased abundance in culture media or cells during passaging. Moreover, Xiao et al. (18) analyzed the proteins released into the serum-free medium from the tumor microenvironment with short time-cultured lung cancer and adjacent normal bronchial epithelial cells, thus demonstrating the versatility of this approach.In this study, we performed a shotgun proteomics analysis of the conditioned media of four lung cancer cell lines of differing histotypes. Our aim was to identify secreted or membrane-bound proteins that could be useful as novel lung cancer biomarkers. Five proteins were elevated in serum of lung cancer patients, suggesting that they may represent lung cancer biomarkers that are worth validating in the future.  相似文献   

4.
Plenty of epidemiological studies have assessed the effects of AXIN2 polymorphisms on the risk of developing cancer, but the available results were somewhat inconclusive. Odds ratios (ORs) with 95% confidence intervals (CIs) were utilized to investigate the relationship between three AXIN2 variants (rs2240308 C/T, rs1133683 C/T, and rs4791171 A/G) and overall cancer susceptibility. In silico tools were undertaken to investigate the correlation of AXIN2 expression with cancer risk and survival time. Furthermore, we explored the serum expression of AXIN2 by enzyme-linked immunosorbent assay. A total of 4167 cancer patients and 3515 control subjects were evaluated. The overall results demonstrated that there was no major association of these polymorphisms on cancer risk. However, stratified analysis by cancer type showed evidence that rs2240308 C/T polymorphism had a lower risk in lung cancer (OR, 0.76; 95% CI, 0.63-0.92; Pheterogeneity = 0.865) and prostate cancer (OR, 0.54; 95% CI, 0.35-0.84; Pheterogeneity = 0.088) by heterozygote comparison. Similar results were indicated in Asian descendants and population-based studies. In silico analysis showed evidence that AXIN2 expressions in lung cancer and prostate cancer were lower than that in normal counterpart. High expression of AXIN2 may have longer overall survival time than low expression group for lung cancer participants. In addition, individuals who were CC/TC carriers had a higher serum expression level than TT carriers. In conclusion, this pooled analysis suggested that AXIN2 rs2240308 C/T variant may decrease both lung and prostate cancer susceptibility, particularly in Asian descendants and population-based studies. Future large scale and well-designed research are required to validate these effects in more detail.  相似文献   

5.
《Biomarkers》2013,18(2):181-191
Objectives: To identify biomarkers for cancer in asbestosis patients.

Methods: SELDI-TOF and CART were used to identify serum biomarker profiles in 35 asbestosis patients who subsequently developed cancer and 35 did not develop cancer.

Results: Three polypeptide peaks (5707.01, 6598.10, and 20,780.70?Da) could predict the development of cancer with 87% sensitivity and 70% specificity. The first two peaks were identified as KIF18A and KIF5A, respectively, and are part of the Kinesin Superfamily of proteins.

Conclusions: We identified two Kinesin proteins that can be potentially used as blood biomarkers to identify asbestosis patients at risk of developing lung cancer.  相似文献   

6.
7.
This study aimed to discover the novel noninvasive biomarkers for the diagnosis of pulmonary tuberculosis (TB). We applied iTRAQ 2D LC‐MS/MS technique to investigate protein profiles in patients with pulmonary TB and other lung diseases. A total of 34 differentially expressed proteins (24 upregulated proteins and ten downregulated proteins) were identified in the serum of pulmonary TB patients. Significant differences in protein S100‐A9 (S100A9), extracellular superoxide dismutase [Cu‐Zn] (SOD3), and matrix metalloproteinase 9 (MMP9) were found between pulmonary TB and other lung diseases by ELISA. Correlations analysis revealed that the serum concentration of MMP9 in the pulmonary TB was in moderate correlation with SOD3 (r = 0.581) and S100A9 (r = 0.471), while SOD3 was in weak correlation with S100A9 (r = 0.287). The combination of serum S100A9, SOD3, and MMP9 levels could achieve 92.5% sensitivity and 95% specificity to discriminate between pulmonary TB and healthy controls, 90% sensitivity and 87.5% specificity to discriminate between pulmonary TB and pneumonia, and 85% sensitivity and 92.5% specificity to discriminate between pulmonary TB and lung cancer, respectively. The results showed that S100A9, SOD3, and MMP9 may be potential diagnostic biomarkers for pulmonary TB, and provided experimental basis for the diagnosis of pulmonary TB.  相似文献   

8.
Glycosylation is the most important and abundant post-translational modification in serum proteome. Several specific types of glycan epitopes have been shown to be associated with various types of disease. Direct analysis of serum glycoproteins is challenging due to its wide dynamic range. Alternatively, glycoproteins can be discovered in the secretome of model cell lines and then confirmed in blood. However, there has been little experi-mental evidence showing cell line secretome as a tractable target for the study of serum glycoproteins. We used a hydrazine-based glycocapture method to selectively enrich glycoproteins from the secretome of the breast cancer cell line Hs578T. A total of 132 glycoproteins were identified by nanoLC-MS/MS analysis. Among the identified proteins, we selected 13 proteins that had one or more N-glycosylation motifs in the matched peptides, which were included in the Secreted Protein Database but not yet in the Plasma Proteome Database (PPD), and whose antibodies were commercially available. Nine out of the 13 selected proteins were detected from human blood plasma by western analysis. Furthermore, eight proteins were also detected from the plasma by targeted LC-MS/MS, which had never been previously identified by data-dependent LC-MS/MS. Our results provide novel proteins that should be enrolled in PPD and suggest that analysis of cell line secretome with subfractionation is an efficient strategy for discovering disease-relevant serum proteins.  相似文献   

9.

Background

A recent epidemiological study demonstrated a reduced risk of lung cancer mortality in breast cancer patients using antiestrogens. These and other data implicate a role for estrogens in lung cancer, particularly nonsmall cell lung cancer (NSCLC). Approximately 61% of human NSCLC tumors express nuclear estrogen receptor β (ERβ); however, the role of ERβ and estrogens in NSCLC is likely to be multifactorial. Here we tested the hypothesis that proteins interacting with ERβ in human lung adenocarcinoma cells that respond proliferatively to estradiol (E2) are distinct from those in non-E2-responsive cells.

Methods

FLAG affinity purification of FLAG-ERβ-interacting proteins was used to isolate ERβ-interacting proteins in whole cell extracts from E2 proliferative H1793 and non-E2-proliferative A549 lung adenocarcinoma cell lines. Following trypsin digestion, proteins were identified using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). Proteomic data were analyzed using Ingenuity Pathway Analysis. Select results were confirmed by coimmunoprecipitation.

Results

LC-MS/MS identified 27 non-redundant ERβ-interacting proteins. ERβ-interacting proteins included hsp70, hsp60, vimentin, histones and calmodulin. Ingenuity Pathway Analysis of the ERβ-interacting proteins revealed differences in molecular and functional networks between H1793 and A549 lung adenocarcinoma cells. Coimmunoprecipitation experiments in these and other lung adenocarcinoma cells confirmed that ERβ and EGFR interact in a gender-dependent manner and in response to E2 or EGF. BRCA1 interacted with ERβ in A549 cell lines and in human lung adenocarcinoma tumors, but not normal lung tissue.

Conclusion

Our results identify specific differences in ERβ-interacting proteins in lung adenocarcinoma cells corresponding to ligand-dependent differences in estrogenic responses.
  相似文献   

10.
Mass spectrometric profiling using ProteinChip and magnetic beads has rapidly grown over the past years, particularly to generate serum profiles for cancer diagnosis. The molecular weights of these distinguishing peaks are usually under 30 kDa. To identify those low molecular weight proteins and peptides is important for specific assays to be developed and increases biological insight. In this study, low molecular weight proteins and peptides from serum were purified by a combination of weak cation exchange magnetic beads and high performance liquid chromatography. The purified proteins and peptides were analyzed by 1D SDS PAGE, SELDI and LC-MS/MS. 246 proteins were identified from the HPLC fractions by LC-MS/MS. 95(38.62%) proteins were first identified in serum compare with Sys-BodyFluid database. 11(11/96) proteins were documented cancer associated proteins. We also observed about 109 proteins/peptides in SELDI mass spectrum, and 13 of the SELDI features were identified.  相似文献   

11.

Background

Lung cancer is the number one cause of cancer-related deaths in the United States and worldwide. The complex protein changes and/or signature of protein expression in lung cancer, particularly in non-small cell lung cancer (NSCLC) has not been well defined. Although several studies have investigated the protein profile in lung cancers, the knowledge is far from complete. Among early studies, mucin5B (MUC5B) has been suggested to play an important role in the tumor progression. MUC5B is the major gel-forming mucin in the airway. In this study, we investigated the overall protein profile and MUC5B expression in lung adenocarcinomas, the most common type of NSCLCs.

Methods

Lung adenocarcinoma tissue in formalin-fixed paraffin-embedded (FFPE) blocks was collected and microdissected. Peptides from 8 tumors and 8 tumor-matched normal lung tissue were extracted and labeled with 8-channel iTRAQ reagents. The labeled peptides were identified and quantified by LC-MS/MS using an LTQ Orbitrap Velos mass spectrometer. MUC5B expression identified by iTRAQ labeling was further validated using immunohistochemistry (IHC) on tumor tissue microarray (TMA).

Results

A total of 1288 peptides from 210 proteins were identified and quantified in tumor tissues. Twenty-two proteins showed a greater than 1.5-fold differences between tumor and tumor-matched normal lung tissues. Fifteen proteins, including MUC5B, showed significant changes in tumor tissues. The aberrant expression of MUC5B was further identified in 71.1% of lung adenocarcinomas in the TMA.

Discussions

A subset of tumor-associated proteins was differentially expressed in lung adenocarcinomas. The differential expression of MUC5B in lung adenocarcinomas suggests its role as a potential biomarker in the detection of adenocarcinomas.  相似文献   

12.
Exosomal microRNAs (miRNAs) have great potentials as a novel biomarker to predict lung cancer. We applied a miRNA microarray to identify aberrantly expressed serum exosomal miRNAs as candidate biomarkers for patients with lung adenocarcinoma (LUAD). Compared with the normal control, 31 exosomal miRNAs were found to be upregulated and 29 exosomal miRNAs were downregulated in the serum of LUAD respectively. Then, 10 dysregulated exosomal miRNAs expression levels in serum were further validated via qRT-polymerase chain reaction. Notably, exosomal miR-7977 was highest expressed and miR-98-3p was lowest expressed in the patients with LUAD, and exosomal miR-7977 showed significant correlation with the N stage and TNM stage with patients with LUAD (P < .05). Receiver operating characteristic curve showed that the abundant level of exosomal miR-7977 may predict LUAD with an area of under the curve (AUC) of 0.787. In comparison with exosomal miR-7977, exosomal miR-98-3p had a smaller area (0.719). The combination of exosomal miR-7977 and miR-98-3p improved the AUC to 0.816. Furthermore, in vitro experiments revealed that inhibition of miR-7977 enhanced the proliferation, invasion, and inhibited apoptosis in A549 cells, the opposite results were performed by miR-7977 mimics. In conclusion, exosomal miR-7977 was identified as a novel biomarker for patients with LUAD and may play as a tumor suppressor in lung cancer.  相似文献   

13.
目的:建立早期胃癌外周血清特征性多肽谱,分析其生物学特征,以探索一种特异且敏感的早期胃癌血清学诊断方法。方法:采集10例早期胃癌和10例正常对照血清,使用蛋白沉淀法去除高丰度血清蛋白质后,通过液相色谱-质谱联用技术重复三次进行多肽分离、离子化、质谱检测,将原始数据应用Label free方法中Max Quant算法对肽段进行相对定量,分析两组差异多肽及差异多肽匹配蛋白。结果:EGC组和N组重复三次所得色谱图总体比较一致,多肽重复检出率分别为87.54%和85.67%。其中EGC组可重复检测到的Unique peptide有65条,匹配对应31个蛋白;在EGC组和N组血清中显著差异的Unique peptide有22条,匹配对应11个蛋白。对血清显著差异多肽所匹配蛋白进行生物学分析,发现这些蛋白质多数位于细胞外,功能类别主要涉及分子水平的序列变换、信号肽、N-糖基化位点等,信号通路主要富集在凝血级联通路和补体级联通路。结论:早期胃癌血清特异性多肽谱图的建立可望成为胃癌早期诊断的血清学标志物,后续试验将进一步针对这些差异多肽进一步分析验证,筛选出早期胃癌标志性多肽,同时应用大样本进行验证,筛选出特异高效的早期胃癌血清标志物。  相似文献   

14.
15.
Inherited predisposition to lung cancer is a phenotypic trait shared by different mouse inbred strains that show either a high or an intermediate predisposition. Other strains are instead genetically resistant. The Pas1 locus is the major determinant of lung cancer predisposition in the A/J strain (Gariboldi et al. 1993). To define the determinants of susceptibility to lung tumorigenesis in the highly susceptible SWR/J and in the intermediately susceptible BALB/c mice, we analyzed (BALB/c × SWR/J)F2 and (BALB/c × C3H/He)F2 crosses by genetic linkage experiments. The present results provide unequivocal evidence that the same Pas1/+ allele that leads to lung cancer predisposition is shared by A/J, SWR/J, and BALB/c strains. The intermediate susceptibility of the BALB/c strain would result by interaction of Pas1 locus with lung cancer resistance loci. Received: 18 April 1997 / Accepted: 15 June 1997  相似文献   

16.
17.
Heo SH  Lee SJ  Ryoo HM  Park JY  Cho JY 《Proteomics》2007,7(23):4292-4302
Glycoproteins in human serum play fundamental roles in many biological processes, and also have clinical value as biomarkers for disease progression and treatment. In this study, we isolated glycoproteins from the sera of three healthy individuals and three lung adenocarcinoma patients using multilectin affinity chromatography. The recovered glycoproteins were subjected to treatment with peptide-N-glycosidase F (PNGase F) and in-gel digestion by trypsin. Tryptic peptides were analyzed by nano-LC coupled to ESI-MS/MS and the MS/MS spectra were processed by Bioworks 3.2 and an in-house bioinformatics tool, ProtAn. Approximately 90% of the proteins identified contained more than one potential glycosylation site. Comparison of the serum glycoproteome of healthy and adenocarcinoma individuals revealed 38 cancer-selective proteins. Among them, 60% have previously been reported as low abundance proteins in human sera. We identified several cancer-selective proteins that have been previously characterized as potential indicators of lung cancer in serum or plasma, including haptoglobin (HP), inter-alpha-trypsin inhibitor heavy chain 4 (ITI-H4), complement C3 precursor, and leucine-rich alpha-2-glycoprotein. In addition, plasma kallikrein (KLKB1) and inter-alpha-trypsin inhibitor heavy chain 3 (ITI-H3) were identified as being potentially elevated in the lung cancer group, and were validated by Western blot analysis. Furthermore, approximately 18 kDa plasma kallirein protein fragment was detected at high levels in 25 out of 28 adenocarcinoma patients, while one of the eight normal individuals showed moderate positive. The results suggest that KLKB1 represents a potential candidate serum biomarker of lung cancer.  相似文献   

18.
19.
Screening for prostate cancer remains unsatisfactory. Recent studies have examined the cancer diagnostic/prognostic values of various acute phase proteins, such as haptoglobin. We describe here a novel method of surface plasmon resonance (SPR) based on multi-sequential analysis with SNA-1, AAL, and PHA-L4 lectin, to estimate the glycosylation status of haptoglobin in sera of patients with prostate cancer (n = 15), benign prostate disease (BPD) including benign prostatic hypertrophy (n = 20), and normal subjects (n = 11). The SPR-based analysis involves the use of anti-haptoglobin as ligand and dilution of the analyte to 1400-fold and filtration, followed by detection of the sugar chain by lectin solution. The normalized RU of lectin to haptoglobin represents the binding amount of lectin divided by that of haptoglobin. The normalized RU by SNA-1 of the prostate cancer group was significantly higher than those of the control and BPD group. SNA-1 detected NeuAcα2,6 in a biantennary sugar chain, whose content was the highest among the major glycoproteins in serum. Serum samples diluted about 7000-fold were subjected to microanalysis at 10 ng/μl and 10 μl/min for 4 min. The combination of SNA-1 and haptoglobin by SPR multi-sequential analysis offered the most accurate diagnosis of prostate cancer without any modification of serum glycoproteins.  相似文献   

20.
The early diagnosis of lung cancer is an effective approach to reduce the mortality caused by malignancy. To explore serum biomarkers of lung cancer at early stage, M-BE, a SV40T-transformed human bronchial epithelial cell line with the phenotypic features of early tumorigenesis at high passage, was cultured in the conditioned media to collect its secretory proteins. The proteins secreted from different passage M-BE cells were extracted and then separated by two-dimensional electrophoresis (2-DE). MALDI-TOF/TOF mass spectrometry was adopted to identify the passage-dependent 2-DE spots. Totally, 47 proteins were identified, including 23 that were up-regulated and 24 that were down-regulated. Of these proteins, cathepsin D was a typical secretory protein that exhibited the increased abundance either in culture media or in cells during passaging. Furthermore, the proteomic conclusions were validated in the clinical samples of lung cancer patients. When sandwich ELISA was used, the concentrations of cathepsin D in plasma showed significant differences between lung squamous cell carcinomas (SCC, 104 cases) and normal donors (36 cases, p 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号