首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Enzymatic syntheses of biodiesel via alcoholysis of different vegetable oils (sunflower, borage, olive and soybean) have been studied. Loss of lipase activity induced by the nucleophile is greater with methanol than with ethanol, and is greater for Lipozyme TL IM than for Novozym 435. The optimum volume of ethanol depends on the loading of solid biocatalyst and is higher for preparations of Novozym 435 than for Lipozyme TL IM. Maximum rates were obtained with Lipozyme TL IM, for a molar ratio of alcohol to FA residues of 0.33. By contrast, Novozym 435 requires at least a 2:1 ratio. Alcoholysis of the vegetable oils is faster with Lipozyme TL IM than with Novozym 435. Use of a high loading of Novozym 435 (50% w/w) and a large molar excess of ethanol are required to obtain an initial rate similar to that obtained with Lipozyme TL IM at a lower enzyme loading (10% w/w) and an equimolar ratio of ethanol and FA residues. Novozym 435 produces quantitative conversions in only 7h at 25 degrees C, but complete conversions are not obtained with Lipozyme TL IM. Three stage stepwise addition of ethanol yields 84% conversion to ethyl esters for Lipozyme TL IM. Hence use of Novozym 435 is preferred. After nine cycles in a batch reactor Novozym 435 retained 85% of its initial activity.  相似文献   

2.
In human milk fat (HMF), palmitic acid (20–30%), the major saturated fatty acid, is mostly esterified at the sn-2 position of triacylglycerols, while unsaturated fatty acids are at the sn-1,3 positions, conversely to that occurring in vegetable oils.This study aims at the production of HMF substitutes by enzyme-catalyzed interesterification of tripalmitin with (i) oleic acid (system I) or (ii) omega-3 polyunsaturated fatty acids (omega-3 PUFA) (system II) in solvent-free media. Interesterification activity and batch operational stability of commercial immobilized lipases from Rhizomucor miehei (Lipozyme RM IM), Thermomyces lanuginosa (Lipozyme TL IM) and Candida antarctica (Novozym 435) from Novozymes, DK, and Candida parapsilosis lipase/acyltransferase immobilized on Accurel MP 1000 were evaluated. After 24-h reaction at 60 °C, molar incorporation of oleic acid was about 27% for all the commercial lipases tested and 9% with C. parapsilosis enzyme. Concerning omega-3 PUFA, the highest incorporations were observed with Novozym 435 (21.6%) and Lipozyme RM IM (20%), in contrast with C. parapsilosis enzyme (8.5%) and Lipozyme TL IM (8.2%). In system I, Lipozyme RM IM maintained its activity for 10 repeated 23-h batches while for Lipozyme TL IM, Novozym 435 and C. parapsilosis enzyme, linear (half-life time, t1/2 = 154 h), series-type (t1/2 = 253 h) and first-order (t1/2 = 34.5 h) deactivations were respectively observed. In system II, Lipozyme RM IM showed linear deactivation (t1/2 = 276 h), while Novozym 435 (t1/2 = 322 h) and C. parapsilosis enzyme (t1/2 = 127 h), presented series-type deactivation. Both activity and stability of the biocatalysts depended on the acyl donor used.  相似文献   

3.
Esters of cinnamyl alcohol find many applications in food, cosmetic and pharmaceutical industries as flavor and fragrance compounds. The current work focuses on the synthesis of cinnamyl laurate from cinnamyl alcohol and lauric acid, including screening of various immobilized lipases and optimization of reaction conditions such as catalyst loading, speed of agitation, mole ratio and temperature. Among different lipases screened such as Novozym 435, Lipozyme RM IM and Lipozyme TL IM, Novozym 435 was found to be the best catalyst with 60% conversion in 2 h at 30 °C for equimolar quantities of the reactants using 0.33% (w/v) of catalyst and toluene as solvent. An ordered bi–bi mechanism with dead-end complex of lauric acid was found to represent the kinetic data.  相似文献   

4.
This work investigated the influence of temperature, pressure, exposure times and depressurization rate on the activity of a non-commercial immobilized lipase from Yarrowia lipolytica (YLL) submitted to compressed carbon dioxide, propane and n-butane. A high-pressure cell was employed in the experiments, in the pressure range of 10–280 bar, varying the temperature from 35 to 75 °C, exposure times from 1 to 6 h, and adopting distinct decompression rates. Results showed that significant activity losses were obtained when the treatment was conducted in carbon dioxide, while negligible losses were observed in both propane and n-butane. For the treatment with carbon dioxide, within the range studied, the decompression rate affected positively enzyme activity, while the exposure time and temperature presented an opposite effect on the non-commercial immobilized lipase from Y. lipolytica (YLL). Additionally, the performance of two commercial immobilized lipases (Lipozyme IM and Novozym 435) and the immobilized YLL in the three solvents was compared. Immobilized YLL has shown to be more suitable than Lipozyme IM for enzyme-catalyzed reactions using compressed propane and n-butane as solvents, but with inferior performance compared to Novozym 435 treated in these solvents.  相似文献   

5.
Three new synthetic routes were critically evaluated for the lipase-catalyzed production of 1,3-oleoyl-2 docosahexaenoylglycerol (ODO) in relatively large-scale (approximately 200 g). First, the production of 1,3-diolein by the reaction of glycerol and oleic acid followed by incorporation of docosahexaenoic (DHA) ethyl ester at the sn-2 position was studied. 1,3-Diolein was produced in 68.3% and 84.6% yield when stoichiometric amounts of the substrates were reacted at 25 °C for 8 h in the presence of 10% Novozym 435 and Lipozyme RM IM, respectively. Further increase in reaction temperature and time led to decrease in the 1,3-diolein yield. However, only a 9.4% yield of triacylglycerol was obtained in the subsequent reaction step when the 1,3-diolein was reacted with DHA ethyl ester in the presence of Novozym 435. Secondly, the feasibility of direct acidolysis was studied. Acidolysis of single cell oil (SCO) in excess oleic acid using Novozym 435 as the catalyst occurred twice as fast in solvent (tert-butanol) compared to a solvent-free system, and 63% oleic acid was incorporated into SCO. However, the regio-isomeric purity of the product was poor. Finally, the ethanolysis of SCO to produce DHA-enriched 2-monoacylglycerol followed by esterification with oleic acid or ethyl oleate was investigated. ODO was obtained in 50.9% regio-purity by Lipozyme RM IM-catalyzed esterification. The latter method was the most feasible for preparing ODO in large-scale. This synthetic route could be adapted for related triacylglycerols containing highly polyunsaturated when their productions in large-scale and high regio-purity are required.  相似文献   

6.
L-ascorbyl acetate was synthesized through lipase-catalyzed esterification using Lipozyme TLIM and Novozym 435. Four solvents, including methanol, ethanol, acetonitrile, and acetone were investigated for the reaction, and acetone and acetonitrile were found to be suitable reaction media. The influences of several parameters such as water activity (a w), substrate molar ratio, enzyme loading, and reaction temperature on esterification of L-ascorbic acid were systematically and quantitatively analyzed. Through optimizing the reaction, lipase-catalyzed esterification of L-ascorbic acid gave a maximum conversion of 99%. The results from using Lipozyme TLIM and Novozym 435 as biocatalysts both showed that a w was an important factor for the conversion of L-ascorbic acid. The effect of pH value on lipase-catalyzed L-ascorbic acid esterification in acetone was also investigated. Furthermore, results from a kinetic characterization of Lipozyme TLIM were compared with those for Novozym 435, and suggested that the maximum reaction rate for Lipozyme TLIM was greater than that for Novozym 435, while the enzyme affinity for substrate was greater for Novozym 436.  相似文献   

7.
复合脂肪酶催化生物柴油的初步研究   总被引:6,自引:0,他引:6  
初步探讨了复合脂肪酶催化生物柴油的工艺。优化了复合酶配比条件和叔丁醇反应体系。在无溶剂体系中,Novozym435分别与Lipozyme TLIM和Lipozyme RMIM均以70/30质量比混合时,甲酯得率分别达到94.52%和96.25%,比Novozym435单独催化时的甲酯得率分别提高了9.52%和9.99%。在叔丁醇体系中,当Novozym435与Li-pozyme TLIM和Lipozyme RMIM分别以60/40和80/20的质量比混合时,其甲酯得率分别为85.06%和81.5%,比Novozym435单独催化的效率分别提高了9.89%和7.48%。优化叔丁醇体系中复合酶催化条件后,甲酯得率达92%。  相似文献   

8.
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a selective systemic herbicide which is absorbed by leaves and roots. MCPA esters are preferred due to their low water solubility and environmental friendliness. Esterification of MCPA with n-butanol was investigated as a model reaction using immobilized enzymes under the influence of microwave irradiation. Different immobilized enzymes such as Novozym 435, Lipozyme TL IM, Lipozyme RM IM and Lipase AYS Amano were studied under microwave irradiation amongst which Novozym 435 (immobilized Candida antarctica lipase B) was the best catalyst. Effects of various parameters were systematically studied on rates and conversion. Under microwave irradiation, the initial rates were observed to increase up to 2-fold. Under optimized conditions of 0.1 mmol MCPA and 0.3 mmol n-butanol in 15 mL 1,4-dioxane as solvent, Novozym 435 showed a conversion of 83% at 60 °C in 6 h. Based on initial rate and progress curve data, the reaction was shown to follow the Ping Pong bi–bi mechanism with inhibition by MCPA and n-butanol. Esterification of MCPA was also studied with different alcohols such as isopropyl alcohol, n-pentanol, n-hexanol, benzyl alcohol and 2-ethyl-1-hexanol.  相似文献   

9.
tert-Butanol, as a novel reaction medium, has been adopted for lipase-catalyzed transesterification of rapeseed oil for biodiesel production, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. Combined use of Lipozyme TL IM and Novozym 435 was proposed further to catalyze the methanolysis and the highest biodiesel yield of 95% could be achieved under the optimum conditions (tert-butanol/oil volume ratio 1:1; methanol/oil molar ratio 4:1; 3% Lipozyme TL IM and 1% Novozym 435 based on the oil weight; temperature 35 °C; 130 rpm, 12 h). There was no obvious loss in lipase activity even after being repeatedly used for 200 cycles with tert-butanol as the reaction medium. Furthermore, waste oil was also explored for biodiesel production and it has been found that lipase also showed good stability in this novel system.  相似文献   

10.
《Process Biochemistry》2010,45(4):519-525
The production of biodiesel with soybean oil and methanol through transesterification by Novozym 435 (Candida antarctica lipase B immobilized on polyacrylic resin) were conducted under two different conditions—ultrasonic irradiation and vibration to compare their overall effects. Compared with vibration, ultrasonic irradiation significantly enhanced the activity of Novozym 435. The reaction rate was further increased under the condition of ultrasonic irradiation with vibration (UIV). Effects of reaction conditions, such as ultrasonic power, water content, organic solvents, ratio of solvent/oil, ratio of methanol/oil, enzyme dosage and temperature on the activity of Novozym 435 were investigated under UIV. Under the optimum conditions (50% of ultrasonic power, 50 rpm vibration, water content of 0.5%, tert-amyl alcohol/oil volume ratio of 1:1, methanol/oil molar ratio of 6:1, 6% Novozym 435 and 40 °C), 96% yield of fatty acid methyl ester (FAME) could be achieved in 4 h. Furthermore, repeated use of Novozym 435 after five cycles showed no obvious loss in enzyme activity, which suggested this enzyme was stable under the UIV condition. These results indicated that UIV was a fast and efficient method for biodiesel production.  相似文献   

11.
Research work was objectively targeted to synthesize highly pure diacylglycerol (DAG) with glycerolysis of soybean oil in a solvent medium of t-butanol. Three commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) were screened, and Novozym 435 was the best out of three candidates. Batch reaction conditions of the enzymatic glycerolysis, the substrate mass ratio, the reaction temperature and the substrate concentration, were studied. The optimal reaction conditions were achieved as 6.23:1 mass ratio of soybean oil to glycerol, 40% (w/v) of substrate concentration in t-butanol and reaction temperature of 50 °C. A two-stage molecular distillation was employed for purification of DAG from reaction products. Scale-up was attempted based on the optimized reaction conditions, 98.7% (24 h) for the conversion rate of soybean oil, 48.5% of DAG in the glycerolysis products and 96.1% for the content of DAG in the final products were taken in account as the results.  相似文献   

12.
N-vanillylnonanamide (VAN) was successfully synthesized from vanillylamine hydrochloride by enzymatic catalysis in supercritical carbon dioxide (SC–CO2). Five commercial lipases, Novozyme 435, Lipozyme IM, Amano PS, Amano G and Sigma Candida cylindracea type VII, as biocatalysts for VAN synthesis were compared. Lipozyme IM exhibited best yields of tested lipases. Various parameters such as time, temperature, pressure and vanillylamine hydrochloride/nonanoic anhydride ratio that influenced the reaction were investigated. Nonanoic anhydride showed the best acyl donor of the employed substrates. An amidation yield of 40% was obtained when nonanoic anhydride and Lipozyme IM were used at 170 bar and 50 °C for 23 h in SC–CO2. Besides, addition of 2 mM divalent salts (CuCl2 and ZnCl2) significantly increased 11–23% yield of the VAN. The enzyme operational stability suggested that Lipozyme IM maintained over 50 °C of the initial activity for the synthesis of VAN after reuse for 69 h. Furthermore, in vitro, VAN behaved as a potential antibacterial against Escherichia coli.  相似文献   

13.
Preparation of 98% ee (R)-4-chloro-2-butanol was carried out by the enzymatic hydrolysis of chlorohydrin esters, using fungal resting cells and commercial enzymes. Hydrolyzes were carried out using lipases from Candida antarctica (Novozym 435), C. rugosa, Rhizomucor miehei (Lipozyme IM), Burkolia cepacia, and resting cells of Rhizopus oryzae and Aspergillus flavus. The influence of the enzyme, the solvent, the temperature, and the alkyl chain length on the selectivity of hydrolyzes of isomeric mixtures of chlorohydrin esters is described. Regioselectivity was higher than 95% for some of the tested lipases. Novozym 435 allowed preparation of the (R)-4-chloro-2-butanol after 15 min of reaction at 30-40 degrees C.  相似文献   

14.
The enzymatic esterification of dihydrocaffeic acid with linoleyl alcohol, using immobilized lipases (Lipozyme IM 20 and Novozym 435), was investigated in selected organic solvent media. Novozym 435 was found to be more efficient for catalyzing the esterification reaction. The highest enzymatic activity of 0.89 μmol esterified linoleyl alcohol/g solid enzyme/min was obtained in a hexane/2-butanone mixture of 75:25 (v/v), with an esterification yield of 75%; however, an increase in the 2-butanone proportion in the mixture up to 50% (v/v) resulted in a decrease in enzymatic activity and esterification yield to 0.38 μmol esterified linoleyl alcohol/g solid enzyme/min and 40%, respectively. The maximum esterification yield of 99.3% was obtained with a dihydrocaffeic acid to linoleyl alcohol ratio of 1:8. The electrospray ionization-mass spectroscopic structural analysis of the end products confirmed the biosynthesis of dihydrocaffeic acid ester of linoleyl alcohol, which demonstrated an anti-radical activity using 2,2-diphenyl-1-picrylhydrazyl as a radical model.  相似文献   

15.
The enzymatic synthesis of biodiesel by a high-pressure semi-continuous process in near-critical carbon dioxide (NcCO(2)) was studied. Biodiesel synthesis was evaluated in both batch and semi-continuous systems to develop an effective process. Batch processing demonstrated the advantageous properties of NcCO(2) as an alternative reaction medium. Three immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM from Novozymes) were tested, with Lipozyme TL IM the most effective, showing the highest conversion. Biodiesel conversion from several edible and non-edible oil feedstocks reached >92%. Higher conversion (99.0%) was obtained in a shorter time by employing repeated batch processes with optimized conditions: 44.3 g (500 mM) canola oil, a substrate molar ratio (methanol:oil) of 3:1, an enzyme loading of 20 wt% (of the oil used), at 30 °C, 100 bar, and 300 rpm agitation. The enzyme maintained 80.2% of its initial stability after being reused eight times. These results suggest that this method produces biodiesel energy-efficiently and environment-friendly.  相似文献   

16.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

17.
In order to examine the industrial potential to indirectly isolate phytosterols from deodoriser distillates (DODs), enzymatic transesterification of an industrial rapeseed and soybean oil DOD mixture with bioethanol was investigated using commercial lipases and a few newly immobilised preparations of lipases. The lipases from different sources and differing preparation forms were evaluated, in terms of thermostability, enzyme efficiency, and toleration of ethanol. Lipozyme 435 and Lipozyme NS-40044 TLL were found to be most effective biocatalysts in catalysing ethanolysis of glycerides and steryl esters from DODs. The optimum conditions are 10% enzyme load (wt% of DODs), ethanol/DODs of 3.0:1.0 (mol/mol), water content 0.125% (based on the weight of total mixture), and reaction at 30 °C for 5 h. The results demonstrated that >95% sterols can be recovered as free form (>85% sterol esters were liberated as free sterols within 4 h). With this process, the system was simplified as fatty acid ethyl esters and free sterol as major components, where free sterols can be recovered via solvent extraction or molecular distillation. Furthermore, a reuse study of enzyme in consecutive batch reactions demonstrated an excellent operation stability and reusability of Lipozyme 435 and Lipozyme NS-40044 TLL with the developed process. This work indicated that the industrially refined waste DODs can be directly subjected to an enzymatic process for high efficacy recovery of phytosterol without any pre-process, driven by robust lipase preparations.  相似文献   

18.
固定化脂肪酶催化毛棉籽油制备生物柴油   总被引:3,自引:1,他引:3  
研究了固定化脂肪酶Lipozyme TL IM和Novozym435催化毛棉籽油和乙酸甲酯制备生物柴油的过程。通过向反应体系中添加甲醇,可减少乙酸的抑制,明显提高生物柴油得率,确定最佳反应条件为:正己烷作溶剂,乙酸甲酯与油摩尔比9:1,添加油重3%的甲醇、油重10%的LipozymeTLIM和5%的Novozym435复合使用,温度55°C,反应8h,生物柴油得率达到91.83%。最后探索了酶催化毛棉籽油合成生物柴油的动力学,得到动力学方程。  相似文献   

19.
A comparative study was made of Novozym 435-catalyzed regioselective acylation of 1-beta-D-arabinofuranosylcytosine with vinyl propionate for the preparation of the 5'-O-monoester in eleven co-solvent mixtures and three pure polar solvents. Novozym 435 displayed low or no acylation activity toward 1-beta-D-arabinofuranosylcytosine in pure polar solvents, although those solvents can dissolve the nucleosides well. When a hexane-pyridine co-solvent system was adopted, both the initial rate and the substrate conversion were enhanced markedly. The polarity of co-solvent mixtures had significant effect on the reaction. Among the solvent mixtures investigated, the higher the polarity of the solvent mixture, the lower the initial reaction rate and the substrate conversion. It was also found that the acylation was dependent on the hydrophobic solvent content, the water activity and the reaction temperature. The most suitable co-solvent, initial water activity, and reaction temperature were hexane-pyridine (28:72, v/v), 0.07, and 50 degrees C, respectively. Under these conditions, the initial rate, the substrate conversion and the regioselectivity were as high as 91.1 mM h(-1), >97% and >98%, respectively, after a reaction time of 6 h. Among the reaction mediums examined, the lowest apparent activation energy was achieved with hexane-pyridine (28:72, v/v), in which Novozym 435 also exhibited good thermal stability.  相似文献   

20.
Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis–Menten equation with a Ping–Pong Bi–Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号