首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incipient species groups or young adaptive radiations such as crossbills (Aves: Loxia) present the opportunity to investigate directly the processes occurring during speciation. New World crossbills include white-winged crossbills (Loxia leucoptera), Hispaniolan crossbills (Loxia megaplaga), and red crossbills (Loxia curvirostra complex), the last of which is comprised of at least nine morphologically and vocally differentiated forms ('call types') where divergent natural selection for specialization on different conifer resources has been strongly implicated as driving diversification. Here we use amplified fragment length polymorphism (AFLP) markers to investigate patterns of genetic variation across populations, call types, and species of New World crossbills. Tree-based analyses using 440 AFLP loci reveal strongly supported clustering of the formally recognized species, but did not separate individuals from the eight call types in the red crossbill complex, consistent with recent divergence and ongoing gene flow. Analyses of genetic differentiation based on inferred allele frequency variation however, reveal subtle but significant levels of genetic differentiation among the different call types of the complex and indicate that between call-type differentiation is greater than that found among different geographic locations within call types. Interpreted in light of evidence of divergent natural selection and strong premating reproductive isolation, the observed genetic differentiation suggests restricted gene flow among sympatric call types consistent with the early stages of ecological speciation.  相似文献   

2.
In these studies the optimum temperature indices for spikelet differentiation were found. The critical period determining the number of spikelets on a spike lies between the single ridge stage and the stage of glume differentiation. During this period a daily temperature below 7.5°C is favourable for differentiation of further spikelets. The processes of differentiation of wheat spikes need certain accumulated temperatures for a mean daily temperature above 0°C. The relationship between the rate of spikelet differentiation and temperature during the differentiation period, and the of these periods are discussed. According to the effect of climate in early spring on the number of differentiated spikelets of winter wheat, three climatic types in early spring are suggested.  相似文献   

3.
4.
In muscle cells, as in a variety of cell types, proliferation and differentiation are mutually exclusive events controlled by a balance of opposing cellular signals. Members of the MyoD family of muscle-specific helix-loop-helix proteins which, in collaboration with ubiquitous factors, activate muscle differentiation and inhibit cell proliferation function at the nexus of the cellular circuits that control proliferation and differentiation of muscle cells. The activities of these myogenic regulators are negatively regulated by peptide growth factors and activated oncogenes whose products transmit growth signals from the membrane to the nucleus. Recent studies have revealed multiple mechanisms through which intracellular growth factor signals may interfere with the functions of the myogenic regulators. When expressed at high levels, members of the MyoD family can override mitogenic signals and can cause growth arrest independent of their effects on differentiation. The ability of these myogenic regulators to inhibit proliferation of normal as well as transformed cells from multiple lineages suggests that they interact with conserved components of the cellular machinery involved in cell cycle progression and that similar types of regulatory factors participate in differentiation and cell cycle control in diverse cell types.  相似文献   

5.
Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.  相似文献   

6.
Embryonic stem (ES) cell differentiation is regulated by cytokines and growth factors, as well as small-compound chemicals incorporated into cells by transporter proteins. Little is known regarding the effect of transporters on ES cell differentiation. This study focused on the effect of transporters during the neural-lineage differentiation of ES cells. Among the 27 types of SLC family transporters, MCT8 expression was coincident with that of neural stem cell markers, and the overexpression of MCT8 accelerated the differentiation into neural cells. These results suggested that the transporters and their substrates also play a crucial role in the regulation of ES cell differentiation.  相似文献   

7.
A major goal of human embryonic stem cell (hESC) research is to regulate differentiation through external means to generate specific cell types with high purity for regenerative medicine applications. Although all hESC lines express pluripotency‐associated genes, their differentiation ability to various lineages differs considerably. We have compared spontaneous differentiation propensity of the two hESC lines, RelicellhES1 and BG01. Spontaneous differentiation of hESC lines grown in different media conditions was followed by differentiation using two methods. Kinetic data generated by real‐time gene expression studies for differentiated cell types were analyzed, and confirmed at protein levels. Both cell lines showed upregulation of genes associated with the 3 germ layers, although stark contrast was evident in the magnitude of upregulation of lineage specific genes. A distinct difference was also found in the rate at which the pluripoteny factors, Oct‐4 and Nanog, were downregulated during differentiation. Once differentiation was initiated, both Oct‐4 and Nanog gene expression was drastically reduced in RelicellhES1, whereas a gradual decrease was observed in BG01. A clear trend is seen in RelicellhES1 to differentiate into neuroectodermal and mesenchymal lineages, whereas BG01 cells are more prone to mesoderm and endoderm development. In addition, suspension versus plated methods of cell culture significantly influenced the outcome of differentiation of certain types of cells. Results obtained by spontaneous differentiation of hESCs were also amplified by induced differentiation. Thus, differential rates of downregulation of pluripotency markers along with culture conditions seem to play an important role in determining the developmental bias of human ES cell lines.  相似文献   

8.
Following the origin of multicellularity in many groups of primitive organisms there evolved more than one cell type. It has been assumed that this early differentiation is related to size — the larger the organism the more cell types. Here two very different kinds of organisms are considered: the volvocine algae that become multicellular by growth, and the cellular slime moulds that become multicellular by aggregation. In both cases there are species that have only one cell type and others that have two. It has been possible to show that there is a perfect correlation with size: the forms with two cell types are significantly larger than those with one. Also in both groups there are forms of intermediate size that will vary from one to two cell types depending on the size of the individuals, suggesting a form of quorum sensing. These observations reinforce the view that size plays a critical role in influencing the degree of differentiation.  相似文献   

9.
Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types -nitrogen fixing or photosynthetic- that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria.  相似文献   

10.
By means of the planimetry and stereometry methods ultrastructural peculiarities of macrophages in the developing dermis++ and in the focus of a subacute experimental inflammation have been investigated. Quantitative characteristics of various types of macrophages are presented. The part of macrophages of various types changes depending on age of the animal or on time of the experimental inflammation. Presence of a strong positive correlation between development of the lysosomal apparatus in ontogenesis and activity of the macrophage surface is stated. In the inflammatory focus this correlation is disturbed and sometimes it changes into a negative one. During the differentiation process of macrophages the synthesis and differentiation apparatuses are the first to form and then lysosomes. It is connected with the fact that the synthesis and secretion apparatuses are necessary for lysosomal formation, as well as for secretory function of macrophages.  相似文献   

11.
Immortalization of precursor cells from the mammalian CNS   总被引:28,自引:0,他引:28  
K Frederiksen  P S Jat  N Valtz  D Levy  R McKay 《Neuron》1988,1(6):439-448
Recent studies show that the nervous system contains many molecularly distinct cell types. Clonal cell marking experiments demonstrate that different cell types in some areas of the CNS are products of a multipotential stem cell. The factors controlling the differentiation of vertebrate CNS precursor cells would be more accessible to molecular analysis if cell lines with precursor properties could be established. Here we show that cell lines expressing an antigenic marker specific for a major brain precursor cell population can be established from rat cerebellum. We demonstrate that cell lines express the precursor, neuronal or glial properties depending on the growth conditions. This work supports the view that brain precursor cells expressing the marker Rat 401 are multipotential and can differentiate into cells with either neuronal or glial properties. Cell lines capable of differentiation should be useful in defining the signaling systems generating the cell types of the brain.  相似文献   

12.
In the avian embryo, cranial neural crest (NC) cells migrate extensively throughout the head region and give rise to most of the cranial skeleton (Le Lievre, C. S. (1978). J. Embryol. Exp. Morphol.47, 17–37). To investigate the skeletogenic differentiation of these cells, NC explants from the mesencephalic level of st. 9+ embryos were grown in standard organ culture on Millipore filter substrates either in isolation or in combination with those tissues with which the cells normally associate during their in vivo migration and at their final tissue sites. The results demonstrate that interaction between premigratory NC and cranial ectoderm leads to chondrogenic differentiation of NC cells. Combination of premigratory NC with presumptive site tissues led to a pattern of NC cell differentiation normally expressed after in vivo migration: Combinations of NC with retinal pigmented epithelia gave cartilage, whereas NC with maxillary ectoderm formed cartilage and membrane bone. Both resulting skeletal tissues possessed their characteristic collagen types (II in cartilage and I in bone) as shown by indirect immunofluorescence using antibodies raised against specific types of collagen. It is concluded that avian cephalic NC cells require tissue interactions if chondrogenic and osteogenic differentiation is to ensue, but that migration per se is not an absolute prerequisite for these types of differentiation. The degree of specificity underlying such interactions is discussed.  相似文献   

13.
A dynamic model for cell differentiation, where cells with internal chemical reaction dynamics interact with each other and replicate was studied. It led to spontaneous differentiation of cells and determination, as discussed in the isologous diversification. The following features of the differentiation were obtained: (1) hierarchical differentiation from a ’stem’ cell to other cell types, with the emergence of the interaction-dependent rules for differentiation; (2) global stability of an ensemble of cells consisting of several cell types, that were sustained by the emergent, autonomous control on the rate of differentiation; (3) existence of several cell colonies with different cell-type distributions. The results provide a novel viewpoint on the origin of a complex cell society, while relevance to some biological problems, especially to the hemopoietic system, is also discussed.  相似文献   

14.
Unequal differentiation between two types of loci (allozyme and DNA markers) across a Mytilus hybrid zone has recently been claimed as evidence for direct selection on some allozyme loci. We provide here a counter-example: a noncoding DNA locus that exhibits as much differentiation as the incriminated allozymes do. The levels of genetic differentiation varied widely among both allozymes and noncoding DNA markers and no clear difference emerged between the two types of markers. This suggests that the strong interlocus variance in genetic differentiation has been confounded with a discrepancy between marker types as a result of an insufficient and unbalanced locus sampling. Heterogeneity in differentiation among neutral loci can be created by stochastic variance during the allopatric divergence preceding a secondary contact. In hybrid zones, a further source of variance is differential introgression among chromosomal regions after the secondary contact owing to the local influence of selected genes on more or less distant markers. However, the degree of differentiation alone gives no way to distinguish indirect pseudo-selection (a regular and ubiquitous feature of hybrid zones) from direct selection. More generally, we suggest that comparative neutrality tests based on discrepancies among marker types have to be applied with caution when the presence of semi-permeable genetic barriers to gene exchange is suspected.  相似文献   

15.
The protein spectra of two fractions (the soluble and the membrane fraction) of chick embryo kidney homogenates were isolated by electrophoresis on polyacrylamide gels with the aim of detecting the kidney differentiation process at the molecular level and, at the same time, of evaluating similarities in the construction of the mesonephros and metanephros at this level. Corresponding stages of the above two types of kidney were chosen for studying changes in protein structure during differentiation--i.e. the outset of differentiation (the 6-day mesonephros, the 11-day metanephros) and the stage of full maturity (the 14-day mesonephros, the 20-day metanephros). A total of 36 proteins was distinguished. The analysis of the protein spectra showed that the number of proteins changes but slightly during differentiation; the protein composition of the two types of kidney during differentiation altered by 20-35% of the total number of proteins; the similarity of the protein composition of the corresponding stages of mesonephros and metanephros, expressed as the proportion of the number of identical proteins, was greater than the mutual similarity of different developmental stages of the same type of kidney. The percentage of different proteins at corresponding stages of the kidneys varied from 5% to 23% of the total number of proteins detected.  相似文献   

16.
Human embryonic stem cells have the ability to generate all cell types in the body and can potentially provide an unlimited source of cells for cell replacement therapy to treat degenerative diseases such as diabetes. Current differentiation protocols of human embryonic stem cells towards insulin producing beta cells focus on soluble molecules whereas the impact of cell-matrix interactions has been mainly unattended. In this study almost 500 different extracellular matrix protein combinations were screened to systemically identify extracellular matrix proteins that influence differentiation of human embryonic stem cells to the definitive endoderm lineage. The percentage of definitive endoderm cells after differentiation on collagen I and fibronectin was >85% and 65%, respectively. The cells on collagen I substrates displayed different morphology and gene expression during differentiation as assessed by time lapse studies compared to cells on the other tested substrates. Global gene expression analysis showed that cells differentiated on collagen I were largely similar to cells on fibronectin after completed differentiation. Collectively, the data suggest that collagen I induces a more rapid and consistent differentiation of stem cells to definitive endoderm. The results shed light on the importance of extracellular matrix proteins for differentiation and also points to a cost effective and easy method to improve differentiation.  相似文献   

17.
Summary Diversity as a measure of individual variation within a population is widely agreed to reflect the number of different types in the population, taking into account their frequencies. In contrast, differentiation measures variation between two or more populations, demes or subpopulations. As such, it is based on the relative frequencies of types within these subpopulations and, ideally, measures the average distance of subpopulations from their respective lumped remainders. This concept of subpopulation differentiation can be applied consistently to a single population by regarding each individual as a deme (subpopulation) of its own, and it results in a measure of population differentiation T which depends on the relative frequencies of the types and the population size. T corresponds to several indices of variation frequently applied in population genetics and ecology, and it verifies these indices as measures of differentiation rather than diversity. For any particular frequency distribution of types, the diversity is then shown to be the size of a hypothetical population in which each type is represented exactly once, i. e. for which T =1. Hence, the diversity of a population is its differentiation effective number of types. This uniquely specifies the link between the two concepts. Moreover, again corresponds to known measures of diversity applied in population genetics and ecology. While population differentiation can always be estimated from samples, the diversity of a population, particularly if it is large, may not be. In such cases, it is recommended that population differentiation is estimated and the corresponding sample diversity merely computed. Finally, a solution to the problem of measuring multi-locus diversities is provided.  相似文献   

18.
The reaggregation process was studied in dissociated blastula cells from sea urchin embryos to characterize the degree of differentiation among them. During the reaggregation process at least four different cell types appear: (a) cells that remain round, do not reaggregate, and can differentiate into pigment cells; (b) epithelial cells that spread on the substratum and join together to form epithelial sheets, which then develop cilia and round up to form blastulalike structures; (c) spindle-shaped cells that send out protoplasmic extensions over long distances to make contact with other cells; (d) single polyfilamentous cells, their cytoplasm extending into filaments and forming a branched network. The polyfilamentous cells also form syncytia and can show regional differentiation into pigment. Partial success in separating the above types of cells has shown that some of them differ intrinsically. The differences are reflected in morphological differentiation in differential response to calcium, and in amount of hyalin produced.  相似文献   

19.
As an approach toward understanding the molecular mechanisms of neuronal differentiation, we utilized DNA microarrays to elucidate global patterns of gene expression during pontocerebellar development. Through this analysis, we identified groups of genes specific to neuronal precursor cells, associated with axon outgrowth, and regulated in response to contact with synaptic target cells. In the cerebellum, we identified a phase of granule cell differentiation that is independent of interactions with other cerebellar cell types. Analysis of pontine gene expression revealed that distinct programs of gene expression, correlated with axon outgrowth and synapse formation, can be decoupled and are likely influenced by different cells in the cerebellar target environment. Our approach provides insight into the genetic programs underlying the differentiation of specific cell types in the pontocerebellar projection system.  相似文献   

20.
Ultrastructural studies have been made on the three types of cells composing the tegmentum vasculosum in the cochlea of chick embryos as well as on the growth of capillaries within the tegmentum. Inside the tegmentum, specific intercellular cavities were found filled with a fibrillar network. Temporal correlation is discussed between the development of the auditory function of the cochlea and differentiation of the tegmentum. Possible functional role of different cell types and of the described cavities is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号