首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat fragmentation and invasive species often contribute to the decline of native taxa. Since the penetration of non‐native species into natural habitat may be facilitated by habitat fragmentation, it is important to examine how these two factors interact. Previous research documented that, in contrast to most other arthropod taxa, spiders increased in density and morphospecies richness with decreasing fragment area and increasing fragment age (time since insularization) in urban habitat fragments in San Diego County, California, USA. We tested whether a specific mechanism, an increase in non‐native species with fragmentation, is responsible for this pattern. We found that both native and non‐native taxa contributed to the pattern. Abundance of native spiders per pitfall trap sample increased significantly with decreasing fragment size (i.e. a negative density–area relationship) and abundance of non‐natives increased significantly with increasing fragment age. The proportion of non‐native individuals also increased significantly with age. One non‐native species, Oecobius navus, comprised the majority of non‐native individuals (82.2%) and a significant proportion of total individuals (25.1%). Richness of spider families per sample (family density) increased with fragment age due to an increase in the occurrence of non‐natives in older fragments, however, native family richness did not vary with age or area. Due to increasing dominance by non‐native and some native families, family evenness declined with decreasing fragment size and increasing fragment age. Native and non‐native abundance covaried positively arguing against strong negative interactions between the two groups. O. navus had a strong positive association with another common non‐native arthropod, the Argentine ant (Linepitheme humile), suggesting a possible direct interaction. In contrast, abundance of native spiders was negatively correlated with Argentine ant abundance. We hypothesize that fragmentation in this semiarid habitat increases productivity in smaller and older fragments enhancing the density of both native and non‐native taxa.  相似文献   

2.
Several studies have demonstrated that competition between disparate taxa can be important in determining community structure, yet surprisingly, to our knowledge, no quantitative studies have been conducted on competition between carnivorous plants and animals. To examine potential competition between these taxa, we studied dietary and microhabitat overlap between pink sundews (Drosera capillaris) and wolf spiders (Lycosidae) in the field, and conducted a laboratory experiment examining the effects of wolf spiders on sundew fitness. In the field, we found that sundews and spiders had a high dietary overlap with each other and with the available arthropod prey. Associations between sundews and spiders depended on spatial scale: both sundews and spiders were found more frequently in quadrats with more abundant prey, but within quadrats, spiders constructed larger webs and located them further away from sundews as the total sundew trapping area increased, presumably to reduce competition. Spiders also constructed larger webs when fewer prey were available. In the laboratory, our experiment revealed that spiders can significantly reduce sundew fitness. Our findings suggest that members of the plant and animal kingdoms can and do compete.  相似文献   

3.
Campylopus introflexus is an invasive moss in Europe and North America that is adapted to acidic and nutrient-poor sandy soils with sparse vegetation. In habitats like acidic coastal dunes (grey dunes) it can reach high densities, build dense carpets and modify habitat conditions. While the impact of the moss invasion on the vegetation is well analyzed, there is a lack of knowledge regarding possible effects on arthropods. In the present study we analyzed the impact of Campylopus introflexus on the ground-dwelling arthropods carabid beetles and spiders, as both taxa are known to be useful indicator taxa even on a small-scale level. In 2009 we compared species composition in a) invaded, moss-rich (C. introflexus) and b) native, lichen-rich (Cladonia spp.) acidic coastal dunes by using pitfall traps. A total of 1,846 carabid beetles (39 species) and 2,682 spiders (66 species) were caught. Species richness of both taxa and activity densities of spiders were lower in invaded sites. Species assemblages of carabids and spiders differed clearly between the two habitat types and single species were displaced by the moss encroachment. Phytophagous carabid beetles, web-building spiders and wolf spiders were more abundant in native, lichen-rich sites. Shifts in species composition can be explained by differences in the vegetation structure, microclimate conditions and most likely a reduced food supply in invaded sites. By forming dense carpets and covering large areas, the moss invasion strongly alters typical arthropod assemblages of endangered and protected (EU-directive) acidic coastal dunes.  相似文献   

4.
Salinity interacts with many physiological functions and therefore probably influences the distribution of terrestrial fauna in tidal flooded salt marshes. The present study tests the hypothesis that the physiological tolerance of stenotopic wolf spiders for saline conditions at least partially determines their occurrence throughout salt‐marsh and nonsaline habitats. The duration of survival of three stenotopic wolf spider species (Araneae: Lycosidae) with different habitat preferences is compared in a controlled laboratory experiment. The forest‐dwelling Pardosa saltans, the salt‐marsh resident Pardosa purbeckensis and its sister species the inland‐living Pardosa agrestis are exposed to experimental conditions with different levels of salinity. Individuals (45 males and 20–45 females per treatment) are placed in individual air‐tight boxes filled with water‐saturated sand. Three levels of salinity are tested: nonsaline (0‰), medium saline (33–35‰) and highly saline (66–70‰). Contents of carbon, hydrogen and nitrogen and the molar ration carbon/nitrogen remain constant over time and do not differ among salinity treatments, indicating that starvation effects on survival, if any, are similar for all treatments. Conversely, body water significantly decreases over time and differs among salinity treatments, in accordance with patterns of survival. Conforming to their habitat preference, the survival of P. saltans and P. agrestis decreases quickly under highly saline conditions. Pardosa purbeckensis, however, has a high survival under both saline and nonsaline conditions. The duration of survival of females is significantly lower than that of males of P. saltans and P. purbeckensis. Durations of survival of ground‐living wolf spiders exposed to salinity partly match their habitat distribution but do not explain the restriction of salt‐marsh species to saline habitats.  相似文献   

5.
Evidence is presented for territorial behavior in a burrowing wolf spider, Geolycosa xera archboldi McCrone (Araneae, Lycosidae). These spiders live in burrows in the scrub habitats of central Florida, USA. Mean nearest-neighbor distances repeatedly approximate 30 cm. The constancy of this mean indicates that social spacing may be occurring. A test for perceptual range showed that G. xera can respond to potential prey at distances greater than 30 cm, indicating that the 30-cm nearest-neighbor distance does not represent a distance within which larger neighboring burrow-holders treat smaller neighboring conspecifics as food. Dyadic encounters in field enclosures showed that the distance at which neighbors would not be tolerated was within the observed mean nearest-neighbor distance. In these experimental tests for territorial behavior, smaller dyad members lost burrows significantly more often than larger dyad members.  相似文献   

6.
Various species of large predators are reported to influence each other through interference or exploitation competition that may affect demography and survival of the subordinate species. We analyzed spatial relationships between grey wolf (Canis lupus) and Eurasian lynx (Lynx lynx) in Białowieża Primeval Forest (BPF, eastern Poland) to determine how they partitioned the space. The wolves (= 8) and lynx (n = 14) were radio-tracked in 1991–1999. Three wolves and seven lynx were radio-tracked simultaneously in 1994–1996. Territories of wolf packs and home ranges of lynx overlapped considerably (76% of wolf territories and 50% of lynx home ranges, on average). In three cases, their core areas were also overlapping. Wolf-lynx dyads with overlapping home ranges were simultaneously located at distances from 0 to 28 km from each other. We found neither avoidance nor attraction between wolves and lynx occupying the same areas. We concluded that in BPF, the two large predators coexist due to specialization on different preferred prey and heterogeneous habitat.  相似文献   

7.
任海庆  陈建  袁兴中  刘杰 《生态学报》2016,36(6):1774-1781
为探索天然林和橡胶林蜘蛛多样性现状,于2010年8月在海南黎母山自然保护区选取天然林和橡胶林,采用扫网法、陷阱法和单位面积法收集蜘蛛标本,分析两种林型之间蜘蛛组成、多样性和功能群差异,并以蜘蛛科和数量分布为属性进行主成分分析(PCA),探讨林型中样方之间蜘蛛群落的相似性。共采集蜘蛛标本3609头,用于统计分析的成蛛969头,归属于23科,162种。天然林20科,100种,优势类群为跳蛛科、球蛛科和园蛛科;橡胶林17科,87种,优势类群为肖蛸蛛科、狼蛛科和猫蛛科。从蜘蛛的数量分布看,橡胶林蜘蛛个体密度显著高于天然林;而天然林多样性指数和丰富度指数显著高于橡胶林。橡胶林中结圆网型和游猎型蜘蛛显著高于天然林,结皿网型显著低于天然林,伏击型不存在显著性差异。PCA分析结果表明,24个样方趋于分成天然林和橡胶林2组,并且天然林样方之间相似性极高,而橡胶林样方之间相似性相对较低。以上结果表明:(1)橡胶林替代天然林后蜘蛛群落结构发生变化,多样性降低;(2)增加生境结构的复杂性和减少人为干扰对保护和恢复物种多样性有重要意义。  相似文献   

8.
K. V. Yeargan  L. W. Quate 《Oecologia》1996,106(2):266-271
Large immature and mature female bolas spiders of the genus Mastophora attract certain male moths by aggressive chemical mimicry of those moth species' sex pheromones. These older spiders capture moths by swinging a bolas (i.e., a sticky globule suspended on a thread) at the approaching male moths. Juvenile bolas spiders do not use a bolas, but instead use their first two pairs of legs to grab prey, which our field observations suggested were primarily nematocerous Diptera. Our field experiments over a 2-year period demonstrated that juvenile bolas spiders attract moth flies (Psychodidae), with each species apparently specializing on a particular prey species. In three experiments, sticky traps containing young Mastophora phrynosoma spiderlings consistently captured significantly more male Psychoda phalaenoides than were captured on traps containing spiderlings of other Mastophora species or no spiderlings (control traps). Results from two of the three experiments suggested that Mastophora hutchinsoni spiderlings attract male Psychoda trinodulosa. Only two of our experiments included Mastophora bisaccata and those produced contrasting results. In the first experiment, M. bisaccata appeared to attract P. phalaenoides, albeit in lower numbers than were captured on traps containing M. phrynosoma. However, in a second experiment the following year, M. bisaccata spiderlings attracted Psychoda satchelli, a species that had not been caught on any traps the previous year. As suggested by a systematist four decades ago, the taxon currently called M. bisaccata may consist of two or more sibling species, which could account for the contrasting results obtained from our two experiments involving M. bisaccata. This is the first reported evidence that, during early developmental stadia before these spiders attract moths, juvenile bolas spiders attract their prey.  相似文献   

9.
Summary Butterfly species lists were assembled for 18 Great Basin mountain ranges for which distributional data on mammals and birds have been analysed previously by other workers. The ranges represent remnant islands of the boreal habitat that once was continuous across the Great Basin but is now restricted to higher elevations as a result of climatic change at the close of the Pleistocene. The effects of biogeographic factors (area, distance, elevation) and habitat diversity on butterfly species number were examined. The Great Basin boreal butterfly faunas were found to be depauperate overall relative that of the principal mainland source, the Rocky Mountains, and were found to have fewer species than predicted by the mainland species-area data. However, only a weak area effect, and no distance effect, was detected by bivariate and multivariate analysis. Furthermore, the habitat diversity score found to explain virtually all the variation in bird species number in the same ranges in previous studies is only marginally significantly correlated with butterflies. When the butterflies are subdivided according to their vagility, the relative differences in the species-area correlation and slope (z-value) between the vagility categories were consistent with those found previously for mammals and birds, and, as predicted by theory, less vagile taxa exhibit higher species-area correlations and z-values. Overall, differences in the insular biogeography of buttterflies and vertebrates seem to reflect fundamental ecological differences between the taxa.  相似文献   

10.
Spiders are characterized by their spinning activity. Much of the current knowledge of the spinning apparatus comes from studies on orb web spiders and their relatives, whereas wolf spiders have been more or less neglected in this respect. Therefore, we studied developmental changes in the spinning apparatus of four wolf spiders (Tricca lutetiana, Arctosa alpigena lamperti, Pardosa amentata, and Xerolycosa nemoralis) throughout their life cycles. Each of these lycosids has a stenochronous life cycle, but of varied length (from 1 to 3 years) and number of instars (from seven to ten). Use of the spinning apparatus begins in the first instar, after leaving the egg sac. Secondary ampullate, all piriform, and all but four aciniform glands are tartipore‐accommodated. The tartipores, collared openings through which silk gland ducts pass during proecdysis, appear on the spinning field starting with the second instar. Tartipore‐accommodated glands can function during proecdysis and their evolution corresponds with the way spiders secure themselves when molting. We suggest that the function of aciniform silk in juvenile wolf spiders is to serve as an ancillary “scaffold” supporting the spider's body during ecdysis.  相似文献   

11.
Female spiders deposit chemical cues that elicit male courtship behavior with silk. These cues are often assumed to be species-specific although male spiders may court in response to chemical cues of closely-related species. We used behavioral assays to test the extent of species discrimination of female chemical cues by male Schizocosa ocreata, a wolf spider (Lycosidae). Discrimination, expressed as relative courtship intensity of males, varied significantly with phylogenetic distance. Males did not discriminate between female cues of conspecifics and a sibling species, S. rovneri. Courtship response was intermediate for another species within the ocreata clade and not different from control for spiders outside the clade. These findings support the sibling species status of S. ocreata and S. rovneri, and also suggest the composition of female chemical signals is conserved across closely related wolf spider species.  相似文献   

12.
Abstract Social crab spiders (Thomisidae, Diaea) are found in Eucalyptus forests of varying latitude, altitude and species composition in southern Australia. Neither temperature nor rainfall differ between areas where social Diaea are found, suggesting that spiders have a preferred climatic range, and that they change altitudes at different latitudes to maintain their preferred range. In these areas, those Eucalyptus species that hosted Diaea had smaller leaves and fruit than eucalypts that did not, which suggests that the spiders may choose trees based on leaf morphology.  相似文献   

13.
14.
Modern forestry has created stands with even age distribution of trees and fragmentation of the habitat. In boreal forests, the effects on biodiversity within many taxa need to be examined. We tested the hypothesis that species richness of foliose and fruticose lichens and spiders is positively related in the lower canopy of spruce (Picea abies) in forests with, or without, management in central Sweden. High species richness of lichens may increase the structural complexity of the microhabitat on spruce branches, and bring a higher species richness also in the spider community. In six areas, spruce branches were sampled in old-growth and managed boreal forest stands, respectively. Forest management did not affect the species richness of spiders or lichens, but an effect due to sampling area was found in the latter taxon. There was a significant covariation between species richness of lichens and spiders, and the hypothesised positive correlation was confirmed by separate analyses for each area and combining the probabilities. Moreover, regression analysis on mean values from each site revealed a positive relationship. We conclude that species richness of lichens and spiders covary on spruce branches for functional reasons, i.e. more lichen species promotes a more diverse spider community by increasing the structural heterogeneity. Our results might provide a shortcut for assessing biodiversity in boreal forests.  相似文献   

15.
Summary While a number of advantages may result from group living, it may also lead to increased levels of attack by parasites because groups may be easier to find. This leads to the prediction that levels of parasitism should increase with colony size. We test this prediction by comparing colony size and parasitoid load for two species of colonial orb-weaving spiders from Mexico, Metepeira (undesc. sp., tentatively named atascadero) and Metepeira incrassata, which exhibit contrasting levels of social organization and utilize different habitats. For M. atascadero, which occurs solitarily or in small groups in desert/mesquite grassland habitat, rates of egg-sac parasitism fluctuate widely from year to year, and are closely tied to spider egg output. There is no relationship between colony size and rate of parasitism. For colonial M. incrassata, which occur in tropical rain forest/agricultural habitat, rates of parasitism are relatively constant from year to year. However, there is a positive relationship between colony size and rate of parasitism in this species. These differences are discussed with regard to the stability of the two habitats, prey availability, and the foraging behavior of the respective parasitoids.  相似文献   

16.
The aim of this study is to present a cladogram and phylogenetic system and to use this to discuss the phylogeny and biogeography of the Amblypygi. A total of 29 morphological structures were studied, their plesiomorphic and apomorphic characters or character states were identified, and the resulting data matrix was analysed. As a result, the ‘old’Charontidae or Pulvillata emerge as a paraphyletic group; the genus Paracharon is the sister group of all other amblypygids, which are now termed Euamblypygi. The ‘new’Charontidae (sensu Quintero: the genera Stygophrynus and Charon) are the sister group of the Phrynida or Apulvillata; together they form the Neoamblypygi. The relationships of the genera of the Charinidae cannot be resolved with the available data. They may be a paraphyletic group. The genus Catageus is a possible candidate for being the sister group of the Neoamblypygi. The new system allows a discussion of the phylogeny and biogeography of whip spiders. It also points to unresolved taxa and thus indicates the questions future research should address.  相似文献   

17.
Spiders contribute considerably to diversity in agroecosystems and are important components of natural pest control. Farming system and adjacent habitats may influence spider diversity. In this study, diversity of the spider families Lycosidae and Linyphiidae was studied after spring sowing until the time when a common pest (Rhopalosiphum padi) colonizes cereal fields. The spiders were collected with pitfall traps at eight organically or conventionally managed farms around Uppsala, Sweden, in three different habitats at each site: field margin, crop field and the edge between the two. The effects of farming system and habitat type on diversity of lycosids and linyphiids were considered using three different measures (activity density, species richness and composition). The most dominant species of each spider family, Pardosa agrestis (Lycosidae) and Oedothorax apicatus (Linyphiidae), had higher activity density at organic sites, and farming systems also contained different species compositions of both lycosid and linyphiid spiders. Also, linyphiid species richness was higher on conventional sites and linyphiid species composition was influenced by habitat type, in contrast with lycosids. Activity density and species richness of lycosid spiders were, on the other hand, more associated with field margins than linyphiid spiders.  相似文献   

18.
Arthropod communities in fragmented agricultural landscapes depend on local processes and the interactions between communities in the habitat islands. We aimed to study metacommunity structure of spiders, a group that is known for high dispersal power, local niche partitioning and for engaging in species interactions. While living in fragmented habitats could lead to nestedness, other ecological traits of spiders might equally lead to patterns dominated either by species interactions or habitat filtering. We asked, which community pattern will prevail in a typical agricultural landscape with isolated patches of semi-natural habitats. Such a situation was studied by sampling spiders in 28 grassland locations in a Hungarian agricultural landscape. We used the elements of metacommunity structure (EMS) framework to distinguish between alternative patterns that reveal community organization. The EMS analysis indicated coherent species ranges, high turnover and boundary clumping, suggesting Clementsian community organization. The greatest variation in species composition was explained by local habitat characteristics, indicating habitat filtering. The influence of dispersal could be detected by the significant effect of landscape composition, which was strongest at 500 m. We conclude that dispersal allows spiders to respond coherently to the environment, creating similar communities in similar habitats. Consistent habitat differences, such as species rich versus species poor vegetation, lead to recognisably different, recurrent communities. These characteristics make spiders a predictable and diverse source of natural enemies in agricultural landscapes. Sensitivity to habitat composition at medium distances warns us that landscape homogenization may alter these metacommunity processes.  相似文献   

19.
Ants are highly abundant generalist predators and important ecosystem engineers which can strongly affect the composition of animal communities. We manipulated the density of the ant species Lasius niger with baits in a small‐scale field experiment to study the role of intraguild predation, top‐down control and bottom‐up effects of ants in a dry grassland surrounded by agricultural fields. Two different kinds of baits (honey and tuna) were presented near to the nests and at a distance of 2 m from six L. niger colonies in a dry grassland habitat, where L. niger was a highly abundant, omnipresent species. The experiments were performed for 1 month in spring. Additionally, the natural abundance of L. niger varying with the distance to their nests was used to study the effects on spiders and potential prey groups. The activity of L. niger was significantly higher at tuna baits compared with that at honey baits and empty control dishes. We found no effects of higher activity of L. niger on the arthropod community. However, there is evidence for a facilitation effect of ants on Collembola near to their colonies, probably due to habitat modification, which also influenced the density of Linyphiidae. Both groups had up to four times higher denisities next to L. niger colonies than at a distance of 2 m. Furthermore, δ13C values demonstrated that linyphiid spiders and L. niger predominantly feed on Collembola. We conclude that there is no evidence of top‐down effects of L. niger in a grassland in spring, but we found a facilitation of linyphiid spiders and their prey by the ants, which acted as ecosystem engineers.  相似文献   

20.
The biogeography of littoral Lecane Rotifera   总被引:5,自引:5,他引:0  
Hendrik Segers 《Hydrobiologia》1996,323(3):169-197
Little is known on the biogeography of Rotifera, particularly regarding the littoral taxa. Here, the biogeography of the most specious group of littoral Rotifera, Lecane, is discussed based on a recent revision of the group, and considering only verified records.Only 41.3% of all 167 Lecane morphospecies are widely distributed. Of these, 21 (12.6%) are cosmopolitan (sensu strictu), 26 (15.6%) are Tropicopolitan. There are 6 (3.6%) Arctic-temperate and Pantropical taxa. These categories of widely distributed taxa are not clear-cut, as differences in latitudinal distribution are largely gradual. Ten taxa have odd distributions. Most of these are insufficiently known and some may be recent introductions.All the major zoogeographical regions have their share of endemic taxa, with endemicity rates varying from 6.5% to 21.8%. Thirteen Holarctic, one widespread Eastern hemisphere, eleven Palaearctic, six Palaeotropical, one Australasian and five widespread Western hemisphere taxa have circumscribed ranges encompassing more than one region. The Palaeotropical and Holarctic components are particularly noteworthy, and may result from relatively recent faunal exchange between the Palaearctic and Nearctic, and between the African, Oriental and Australian regions. The different orientation of the major mountain chains of the Eastern and Western hemisphere, and the presence of extensive arid regions in Northern Africa, Arabia and Asia may explain the difference in faunal similarity between the tropical and temperate faunas of the Eastern and Western hemispheres. Ornithochoric dispersal and human introductions may have played a role in the exchange of faunas.The analysis of pairs or groups of closely related taxa only rarely reveals a causal relation between tectonical events and phylogeny. Most vicariant distributions are readily explained by climatological rather than by tectonical considerations. The ranges of some closely related taxa indicate that they have different capacities of dispersal.When compared to pelagic Rotifera, littoral Lecane exhibit a relatively wide variety of distribution patterns, and relatively many have restricted distributions. This may be a consequence of, either or both, their lower abundance, or be related to the littoral habitat which, being less predictable, implies more specific adaptations. Lecane is tropic-centred, which may be a consequence of avoidance of competition and/or predation by Cladocera and, eventually, Ostracoda.The most striking feature in rotifer chorology is the large range of many morphospecies. As such, the group's biogeography is more similar to that of freshwater algae than to that of other freshwater zooplankton. The likely explanations for this are the group's great ability for passive dispersal, combined with a short life-cycle and high fecundity, which are consequences of their parthenogenetic reproduction. So, relatively recent long-distance dispersal defines the ranges of the morphospecies. Vicariance plays a role in the distribution of Rotifera, but its importance is generally subordinate to that of dispersal. However, insufficient taxonomic resolution may be responsible for the apparently large ranges of some morphospecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号