首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Green PB 《Plant physiology》1968,43(8):1169-1184
The view that the plant cell grows by the yielding of the cell wall to turgor pressure can be expressed in the equation: rate = cell extensibility × turgor. All growth rate responses can in principle be resolved into changes in the 2 latter variables. Extensibility will relate primarily to the yielding properties of the cell wall, turgor primarily to solute uptake or production. Use of this simple relationship in vivo requires that at least 2 of the 3 variables be measured in a growing cell. Extensibility is not amenable to direct measurement. Data on rate and turgor for single Nitella cells can, however, be continuously gathered to permit calculation of extensibility (rate/turgor). Rate is accurately obtained from measurements on time-lapse film. Turgor is estimated in the same cell, to within 0.1 atm or less, by measurement of the ability of the cell to compress gas trapped in the closed end of a capillary the open end of which is in the cell vacuole. The method is independent of osmotic equilibrium. It operates continuously for several days, over a several fold increase in cell length, and has response time of less than one minute. Rapid changes in turgor brought on by changes in tonicity of the medium, show that extensibility, as defined above, is not constant but has a value of zero unless the cell has about 80% of normal turgor. Because elastic changes are small, extensibility relates to growth. Over long periods of treatment in a variety of osmotica the threshold value for extensibility and growth is seen to fall to lower values to permit resumption of growth at reduced turgor. A brief period of rapid growth (5× normal) follows the return to normal turgor. All variables then become normal and the cycle can be repeated. The cell remains essentially at osmotic equilibrium, even while growing at 5× the normal rate. The method has potential for detailed in vivo analyses of “wall softening.”  相似文献   

2.
Tissue stresses in growing plant organs   总被引:7,自引:0,他引:7  
Rapidly growing plant organs (e.g. coleopties, hypocotyls, or internodes) are composed of tissues that differ with respect to the thickness, structure, and extensibility of their cell walls. The thick, relatively inextensible outer wall of the epidermal cells contains both transverse and longitudinally oriented cellulose-microfibrils. The orientation of microfibrils of the thin, extensible walls of the parenchyma cells seems to be predominantly transverse. In many growing organs (i.e. leafstalks), the outer epidermal wall is supported by a thickened inner epidermal wall and by thick-walled subepidermal collenchyma tissue. Owing to the turgor pressure of the cells the peripheral walls are under tension, while the extensible inner tissue is under compression. As a corollary, the longitudinal tensile stress of the rigid peripheral wall is high whereas that of the internal walls is lowered. The physical stress between the tissues has been described by Sachs in 1865 as 'tissue tension'. The term 'tissue stress'. however, seems to be more appropriate since it comprises both tension and compression. Hitherto no method has been developed to measure tissue stresses directly as force per unit cross-sectional area. One can demonstrate the existence of tissue stresses by separation of the tissues (splitting, peeling) and determining the resulting strain of the isolated organ fragments. Based on such experiments it has been shown that rapid growth is always accompanied by the existence of longitudinal tissue stresses.  相似文献   

3.
The peripheral cell wall(s) of stems and coleoptiles are 6 to 20 times thicker than the walls of the inner tissues. In coleoptiles, the outer wall of the outer epidermis shows a multilayered, helicoidal cellulose architecture, whereas the walls of the parenchyma and the outer wall of the inner epidermis are unilayered. In hypocotyls and epicotyls both the epidermal and some subepidermal walls are multilayered, helicoidal structures. The walls of the internal tissues (inner cortex, pith) are unilayered, with cellulose microfibrils oriented primarily transversely. Peeled inner tissues rapidly extend in water, whereas the outer cell layer(s) contract on isolation. This indicates that the peripheral walls limit elongation of the intact organ. Experiments with the pressure microprobe indicate that the entire organ can be viewed as a giant, turgid cell: the extensible inner tissues exert a pressure (turgor) on the peripheral wall(s), which bear the longitudinal wall stress of the epidermal and internal cells. Numerous studies have shown that auxin induces elongation of isolated, intact sections by loosening of the growth-limiting peripheral cell wall(s). Likewise, the effect of light on reduction of stem elongation and cell wall extensibility in etiolated seedlings is restricted to the peripheral cell layers of the organ. The extensible inner tissues provide the driving force (turgor pressure), whereas the rigid peripheral wall(s) limit, and hence control, the rate of organ elongation.  相似文献   

4.
The pressure probe was used to conduct in vivo creep and in vivo stress relaxation experiments on the sporangiophores of Phycomyces blakesleeanus. The in vivo creep and in vivo stress relaxation methods are compared with respect to their utility for determining the irreversible wall extensibility and the yield threshold. The results of the in vivo stress relaxation experiments demonstrate that the growth usually does not cease when the external water supply is removed, and the turgor pressure does not decay for hours afterwards. A successful stress relaxation experiment requires that the cell enlargement rate (growth rate) be zero during the turgor pressure decay. In a few experiments, the growth rate was zero during the turgor pressure decay. However, in general only the yield threshold could be determined.

In vivo creep experiments proved to be easier to conduct and more useful in determining values for both the irreversible wall extensibility and the yield threshold. The results of the in vivo creep experiments demonstrate that small steps-up in turgor pressure, generally <0.02 MPa, elicit increases in growth rate as predicted by the growth equations and the augmented growth equations. The irreversible wall extensibility and the yield threshold were determined from these results. The results also demonstrate that steps-up in turgor pressure larger than 0.02 MPa, produce a different response; a decrease in growth rate. The decreased growth rate behavior is related to the magnitude of the step-up, and in general, larger steps-up in turgor pressure produce larger decreases in growth rate and longer periods of decreased growth rate. Qualitatively, this growth behavior is very similar to the “stretch response” previously reported by Dennison and Roth (1967).

  相似文献   

5.
The multiaxial stress of turgor pressure was stimulated in vitro by inflating isolated Nitella cell walls with mercury. The initial in vitro extension at pH 6.5, 5 atmospheres pressure, returned the wall approximately to the in vivo stressed length, and did not induce any additional extension during a 15-minute period. Upon release of pressure, a plastic deformation was observed which did not correlate with cell growth rates until the final stages of cell maturation. Since wall plasticity does not correlate with growth rate, a metabolic factor(s) is implicated. Walls at all stages of development exhibited a primary yield stress between 0 and 2 atmospheres, while rapidly growing cells (1-3% per hour) exhibited a secondary yield stress of 4 to 5 atmospheres. The creep rate and plastic deformation of young walls were markedly enhanced by acid buffers (10 millimolar, pH ≤ 5.3).  相似文献   

6.
Kazuo Takeda  Hiroh Shibaoka 《Planta》1981,151(4):385-392
Throughout the entire period of cell growth, the microfibrils on the inner surface of the outer tangential walls of the epidermal cells of Vigna angularis epicotyls are running parallel to one another and their orientation differs from cell to cell. Although transverse, oblique and longitudinal microfibrils can be observed irrespective of cell age, the frequency distribution of microfibril orientation changes with age. In young cells, transversely oriented microfibrils predominate. In cells of medium age, which are still undergoing elongation, transverse, oblique and longitudinal microfibrils are present in quite similar frequencies. In old, non-growing cells, longitudinally oriented microfibrils are predominent. A decrease in the relative frequency of transversely oriented microfibrils with cell age was also observed in the radial epidermal walls.  相似文献   

7.
In cylindrical cells growing throughout their length, over-all transverse reinforcement of the wall by microfibrils is believed to be required for cell elongation. The multinet theory states that in such cells microfibrils are deposited at the inner surface of the wall with transverse orientation and are then passively reoriented toward the longitudinal direction by the predominant longitudinal strain (surface expension). In the present study young Nitella cells were physically forced to grow in highly abnormal patterns: in length only, in girth only, or with localized suppression of growth. Subsequent gradients of microfibrillar arrangement within the wall cross-section were measured with polarized light and interference microscopes. The novel wall structures produced were in all cases explainable by passive reorientation, i.e. by the multinet theory. The study also showed that orientation of synthesis remains insensitive to several of the physical manipulations that strongly influence the passive behavior of wall microfibrils. Only the localized complete suppression of surface growth led to the deposition of nontransverse cellulose. These results suggest that the presence of strain is needed for continued oriented synthesis, but that the directional aspect of strain is not an “instructional” agent continuously guiding the orientation of synthesis, once this orientation has been established.  相似文献   

8.
The primary walls of epidermal cells in Avena coleoptiles ranging in length from 2 to 40 mm. have been studied in the electron and polarizing microscopes and by the low-angle scattering of x-rays. The outer walls of these cells are composed of multiple layers of cellulose microfibrils oriented longitudinally; initially the number of layers is between 10 and 15 but this increases to about 25 in older tissue. Where epidermal cells touch, these multiple layers fuse gradually into a primary wall of the normal type between cells. In these radial walls, the microfibrils are oriented transversely. Possible mechanisms for the growth of the multilayered outer wall during cell elongation are discussed.  相似文献   

9.
Mine I  Okuda K 《Planta》2003,217(3):425-435
Apical cell wall fragments isolated from the giant-cellular xanthophycean alga Vaucheria terrestris sensu Götz were inflated with silicone oil by applying internal pressure ranging from 0.1 to 0.7 MPa, and the time-course of cell wall deformation was recorded and analyzed by videomicroscopy. Cell wall extensibility in the tip-growing region was estimated by the pressure required for cell wall extension, the amount of total extension until cell wall rupture and the rate of cell wall extension. Apical cell walls exhibited gradual extension, or creep, during inflation, which was eventually followed by rupture at the apical portion, whereas no appreciable extension was found in the cylindrical basal portion of the cell wall fragment. Besides the largest extension observed around the tip, substantial extension was also observed along the subapical region of the cell wall. The wall extensibility was dependent on the buffer pH used for infiltration before inflation. The optimum pH for the extension was about 8.0, but the cell wall was much less extensible after infiltration with an acidic buffer. Cell wall extensibility was dependent on the pH of the buffer used before inflation, regardless of that used in the previous infiltration. Moreover, pretreatment of the cell wall with a protease caused considerable loosening of cell walls, but affected the pH dependence of cell wall extensibility little. These results indicate that the extensibility of the cell walls in the giant tip-growing cells of the alga is distinct from that of plant cells that exhibit "acid growth" in its dependence on environmental pH and the role of cell wall proteins.  相似文献   

10.
The transverse viscoelastic extension of isolated Nitella cell walls is stimulated by acid pH and by Mg2+ and K+ ions. In the presence of 1 millimolar citrate-phosphate buffer the threshold pH in the transverse direction is 3.5, compared to 4.5 in the longitudinal direction. The relative amounts of extension stimulated by acid are comparable in the two directions at their respective thresholds. Longitudinal and transverse Mg2+ ion-induced extensibility begins at 10 millimolar and reaches a plateau between 10 and 100 millimolar. The threshold for K+ ion enhancement is near 10 millimolar in the longitudinal direction and 50 millimolar in the transverse direction. Maximum stimulation by K+ is obtained at 250 millimolar. At their respective maxima, Mg2+ and K+ induce equal amounts of extension. However, the relative amount of extension induced by ions is significantly less in the transverse than in the longitudinal direction. Ions and acids appear to affect different sites in the wall, inasmuch as neither treatment abolishes the effect of the other. Walls from rapidly growing cells are more sensitive to stimulation than nongrowing cells in the longitudinal direction but not in the transverse direction.  相似文献   

11.
The arrangement of cellulose microfibrils in walls of elongating parenchyma cells of Avena coleoptiles, onion roots, and celery petioles was studied in polarizing and electron microscopes by examining whole cell walls and sections. Walls of these cells consist firstly of regions containing the primary pit fields and composed of microfibrils oriented predominantly transversely. The transverse microfibrils show a progressive disorientation from the inside to the outside of the wall which is consistent with the multinet model of wall growth. Between the pit-field regions and running the length of the cells are ribs composed of longitudinally oriented microfibrils. Two types of rib have been found at all stages of cell elongation. In some regions, the wall appears to consist entirely of longitudinal microfibrils so that the rib forms an integral part of the wall. At the edges of such ribs the microfibrils can be seen to change direction from longitudinal in the rib to transverse in the pit-field region. Often, however, the rib appears to consist of an extra separate layer of longitudinal microfibrils outside a continuous wall of transverse microfibrils. These ribs are quite distinct from secondary wall, which consists of longitudinal microfibrils deposited within the primary wall after elongation has ceased. It is evident that the arrangement of cellulose microfibrils in a primary wall can be complex and is probably an expression of specific cellular differentiation.  相似文献   

12.
Cell enlargement in primary leaves of bean (Phaseolus vulgaris L.) can be induced, free of cell divisions, by exposure of 10-d-old, red-light-grown seedlings to white light. The absolute rate of leaf expansion increases until day 12, then decreases until the leaves reached mature size on day 18. The cause of the reduction in growth rate following day 12 has been investigated. Turgor calculated from measurements of leaf water and osmotic potential fell from 6.5 to 3.5 bar before day 12, but remained constant thereafter. The decline of growth after day 12 is not caused by a decrease in turgor. On the other hand, Instron-measured cell-wall extensibility decreased in parallel with growth rate after day 12. Two parameters influencing extensibility were examined. Light-induced acidification of cell walls, which has been shown to initiate wall extension, remained constant over the growth period (days 10–18). Furthermore, cells of any age could be stimulated to excrete H+ by fusicoccin. However, older tissue was not able to grow in response to fusicoccin or light. Measurements of acid-induced extension on preparations of isolated cell walls showed that as cells matured, the cell walls became less able to extend when acidified. These data indicate that it is a decline in the capacity for acid-induced wall loosening that reduces wall extensibility and thus cell enlargement in maturing leaves.Abbreviations and symbols FC fusicoccin - P turgor pressure - RL red light - WEx wall extensibility - WL white light - P w leaf water potential - P s osmotic potential  相似文献   

13.
Partial submergence induces rapid internodal elongation in deepwater rice (Oryza sativa L., cv Habiganj Aman II). We measured in vivo extensibility, tissue tension, hydraulic conductance and osmotic potential in the region of cell elongation in the uppermost internode. The in vivo extensibility of the internode, measured by stretching of living tissue with a custom-made constant stress extensiometer, rose rapidly following submergence of the plant. Both the elastic (Eel) and plastic (Epl) extensibility increased when growth of the internode was induced. The submerged internode displayed tissue tension (elastic outward bending of longitudinally split internode sections); in air-grown control internodes, no such bending occurred. The hydraulic conductance, estimated from the kinetics of tissue shrinkage in 0.5 molar mannitol and subsequent swelling in distilled water, was not changed by submergence. The osmotic potential, measured with a dew-point hygrometer using frozen-thawed tissue, was only 18% less negative in the submerged internode than in the air-grown control. This indicates that osmoregulation takes place in rapidly elongating rice internodes. We suggest that the rapid expansion of the newly formed internodal cells of submerged plants is controlled by the yielding properties (Epl) of the cell walls. Experiments with excised stem sections indicate that gibberellin is involved in increasing the Epl of the elongating cell walls.  相似文献   

14.
Ethylene-induced inhibition of elongation and promotion of lateral expansion in the stems of etiolated pea (Pisum sativum L. var Alaska) seedlings is not associated with any alteration of auxin-stimulated proton extrusion. Indeed, lateral expansion in response to ethylene apparently requires an acidified wall since it is prevented by strong neutral buffers and by the ATPase inhibitor orthovanadate. Ethylene treatment reduces the capacity of live and frozen-thawed sections to extend in the longitudinal direction in response to acid. The effect of ethylene on lateral acid growth capacity is more complicated. Ethylene-treated internodes do not exhibit acid-induced lateral expansion. Ethylene-treated segments which have been frozen-thawed do show an enhanced capacity to extend in the transverse direction at acid pH, but only when the inner tissues have been removed by coring. We conclude that two of the factors which control the directionality of expansion during ethylene treatment are a decrease in the sensitivity of the walls to acid longitudinally and an increase in the sensitivity of the outer cortical parenchyma walls to acid in the transverse direction.  相似文献   

15.
Jean-Pierre Métraux 《Planta》1982,155(6):459-466
Changes in the uronide, neutral-polysacharide, and cellulose composition of the cell wall ofNitella axillaris Braun were followed throughout development of the internodes and correlated with changes in growth rate. As the cells increased in length from 4 to 80 mm during development, the relative growth rate decreased. Cell wall thickness, as measured by wall density, increased in direct proportion to diameter, indicating that cell-wall stress did not change during elogation. Cell-wall analyses were adapted to allow determination of the composition of the wall of single cells. The total amounts of uronides, neutral sugars and cellulose all increased during development. However, as the growth rate decreased, the relative proportions of uronides and neutral sugars, expressed as percent of the dry weight of the wall, decreased, while the proportion of cellulose increased. The neutral sugars liberated upon hydrolysis ofNitella walls are qualitatively similar to those found in hydrolysates of higher plant cell walls: glucose, xylose, mannose, galactose, arabinose fucose and rhamnose. Only the percentage of galactose was found to increase in walls of mature cells, while the percentage of all other sugars decreased. The rate of apposition (g of wall material deposited per unit wall surface area per hour) of neutral polysaccharides decreased rapidly with decreasing growth rate during the early stages of development. The rate of apposition of uronides decreased more steadily throughout development, while that of cellulose, after an early decline, remained constant until dropping off at the end of the elongation period. These correlations between decreasing growth rate and decreasing rate of apposition of neutral sugars and uronides indicate that synthesis of these cell-wall components could be involved in the regulation of the rate of cell elongation inNitella.  相似文献   

16.
Nonami H  Boyer JS 《Plant physiology》1990,93(4):1610-1619
Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low ψw) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low ψw by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low ψw. It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low ψw but that the elastic properties of the walls were of little consequence in this response.  相似文献   

17.
Multinet Growth in the Cell Wall of Nitella   总被引:4,自引:2,他引:4       下载免费PDF全文
  相似文献   

18.
The phylogenetic affiliation and physiological characteristics (e.g., Ks and maximum specific growth rate [μmax]) of an anaerobic ammonium oxidation (anammox) bacterium, “Candidatus Scalindua sp.,” enriched from the marine sediment of Hiroshima Bay, Japan, were investigated. “Candidatus Scalindua sp.” exhibits higher affinity for nitrite and a lower growth rate and yield than the known anammox species.  相似文献   

19.
The growth rate of the Phycomyces sporangiophore fluctuates under constant environmental conditions. These fluctuations underlie the well-characterized sensory responses to environmental changes. We compared growth fluctuations in sporangiophores of unstimulated wild type and behavioral mutants by use of maximum entropy spectral analysis, a mathematical technique that estimates the frequency and amplitude of oscillations in a time series. The mutants studied are believed to be altered near the input (“night-blind”) or output (“stiff” and “hypertropic”) of the photosensory transduction chain. The maximum entropy spectrum of wild type shows a sharp drop-off in spectral density above 0.3 millihertz, several minor peaks between 0.3 and 10 millihertz, and a broad maximum near 10 millihertz. Similar spectra were obtained for a night-blind mutant and a hypertropic mutant. In contrast, the spectra of three stiff mutants, defective in genes madD, madE, or madG, had distinctive peaks near 1.6 mHz and harmonics of this frequency. A madF stiff mutant, which is less stiff than madD, madE, and madG mutants, had a spectrum intermediate between wild type and the three other stiff mutants. Our results indicate that alterations in one or more steps associated with growth regulation output cause the Phycomyces sporangiophore to express a rhythmic growth rate.  相似文献   

20.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号