首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1.  相似文献   

2.
3.
Johnson TL  Olsen LJ 《Plant physiology》2003,133(4):1991-1999
Most peroxisomal matrix proteins possess a carboxy-terminal tripeptide targeting signal, termed peroxisomal targeting signal type 1 (PTS1), and follow a relatively well-characterized pathway of import into the organelle. The peroxisomal targeting signal type 2 (PTS2) pathway of peroxisomal matrix protein import is less well understood. In this study, we investigated the mechanisms of PTS2 protein binding and import using an optimized in vitro assay to reconstitute the transport events. The import of the PTS2 protein thiolase differed from PTS1 protein import in several ways. Thiolase import was slower than typical PTS1 protein import. Competition experiments with both PTS1 and PTS2 proteins revealed that PTS2 protein import was inhibited by addition of excess PTS2 protein, but it was enhanced by the addition of PTS1 proteins. Mature thiolase alone, lacking the PTS2 signal, was not imported into peroxisomes, confirming that the PTS2 signal is necessary for thiolase import. In competition experiments, mature thiolase did not affect the import of a PTS1 protein, but it did decrease the amount of radiolabeled full-length thiolase that was imported. This is consistent with a mechanism by which the mature protein competes with the full-length thiolase during assembly of an import complex at the surface of the membrane. Finally, the addition of zinc to PTS2 protein imports increased the level of thiolase bound and imported into the organelles.  相似文献   

4.
In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.  相似文献   

5.
We have identified an S. cerevisiae integral peroxisomal membrane protein of M of 42,705 (Pex13p) that is a component of the peroxisomal protein import apparatus. Pex13p's most striking feature is an src homology 3 (SH3) domain that interacts directly with yeast Pex5p (former Pas10p), the recognition factor for the COOH-terminal tripeptide signal sequence (PTS1), but not with Pex7p (former Pas7p), the recognition factor for the NH2-terminal nonapeptide signal (PTS2) of peroxisomal matrix proteins. Hence, Pex13p serves as peroxisomal membrane receptor for at least one of the two peroxisomal signal recognition factors. Cells deficient in Pex13p are unable to import peroxisomal matrix proteins containing PTS1 and, surprisingly, also those containing PTS2. Pex13p deficient cells retain membranes containing the peroxisomal membrane protein Pex11p (former Pmp27p), consistent with the existence of independent pathways for the integration of peroxisomal membrane proteins and for the translocation of peroxisomal matrix proteins.  相似文献   

6.
In the yeast Saccharomyces cerevisiae, beta-oxidation of fatty acids is compartmentalised in peroxisomes. Most yeast peroxisomal matrix proteins contain a type 1C-terminal peroxisomal targeting signal (PTS1) consisting of the tripeptide SKL or a conservative variant thereof. PTS1-terminated proteins are imported by Pex5p, which interacts with the targeting signal via a tetratricopeptide repeat (TPR) domain. Yeast cells devoid of Pex5p are unable to import PTS1-containing proteins and cannot degrade fatty acids. Here, the PEX5-TPR domains from human, tobacco, and nematode were inserted into a TPR-less yeast Pex5p construct to generate Pex5p chimaeras. These hybrid proteins were examined for functional complementation of the pex5delta mutant phenotype. Expression of the Pex5p chimaeras in pex5delta mutant cells restored peroxisomal import of PTS1-terminated proteins. Chimaera expression also re-established degradation of oleic acid, allowing growth on this fatty acid as a sole carbon source. We conclude that, in the context of Pex5p chimaeras, the human, tobacco, and nematode Pex5p-TPR domains are functionally interchangeable with the native domain for the peroxisomal import of yeast proteins terminating with canonical PTS1s. Non-conserved yeast PTS1s, such as HRL and HKL, did not interact with the tobacco PEX5-TPR domain in the two-hybrid system. HRL occurs at the C-terminus of the peroxisomal protein Eci1p, which is required for growth on unsaturated fatty acids. Although mutant pex5delta cells expressing a yeast/tobacco Pex5p chimaera failed to import a GFP-Eci1p reporter protein, they were able to grow on oleic acid. We reason that this is due to a cryptic PTS in native Eci1p that can function in a redundant system with the C-terminal HRL.  相似文献   

7.
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.  相似文献   

8.
PTS2 protein import into mammalian peroxisomes   总被引:3,自引:1,他引:2  
Peroxisome targeting signal (PTS)2 directs proteins from their site of synthesis in the cytosol to the lumen of the peroxisome. Unlike PTS1 which is present in the great majority of peroxisomal matrix proteins and whose import mechanics have been dissected in considerable detail, PTS2 is a relatively rare topogenic signal whose import mechanisms are far less well understood. However, as is the case for PTS1 proteins, an inability to import PTS2 proteins leads to human disease. In this report, we describe the biochemical characterization of mammalian PTS2 protein import using a semi-permeabilized cell system. We show that a PTS2-containing reporter molecule is taken up by peroxisomes in a reaction that is time-, temperature-, ATP-, and cytosol-dependent. Furthermore, the import process is specific, saturable, and requires action of the chaperone Hsc70, the cochaperone Hsp40, and the peroxins Pex5p and Pex14p. We also demonstrate peroxisomal translocation of PTS2 reporter/antibody complexes confirming the import competence of higher order structures. Importantly, cultured fibroblasts from patients with the rhizomelic form of chondrodysplasia punctata (RCDP) which are deficient for the PTS2 receptor protein, Pex7p, are unable to import the PTS2 reporter in this assay. The ability to monitor PTS2 import in vitro will permit, for the first time, a detailed comparison of the biochemical properties of PTS1 and PTS2 protein import.  相似文献   

9.
The import of a subset of peroxisomal matrix proteins is mediated by the peroxisomal targeting signal 2 (PTS2). The results of our sequence and physical property analysis of known PTS2 signals and of a mutational study of the least characterized amino acids of a canonical PTS2 motif indicate that PTS2 forms an amphipathic helix accumulating all conserved residues on one side. Three-dimensional structural modeling of the PTS2 receptor PEX7 reveals a groove with an evolutionarily conserved charge distribution complementary to PTS2 signals. Mammalian two-hybrid assays and cross-complementation of a mutation in PTS2 by a compensatory mutation in PEX7 confirm the interaction site. An unstructured linker region separates the PTS2 signal from the core protein. This additional information on PTS2 signals was used to generate a PTS2 prediction algorithm that enabled us to identify novel PTS2 signals within human proteins and to describe KChIP4 as a novel peroxisomal protein.  相似文献   

10.
Saccharomyces cerevisiae delta3,delta2-enoyl-CoA isomerase (Eci1p), encoded by ECI1, is an essential enzyme for the betaoxidation of unsaturated fatty acids. It has been reported, as well as confirmed in this study, to be a peroxisomal protein. Unlike many other peroxisomal proteins, Ecilp possesses both a peroxisome targeting signal type 1 (PTS1)-like signal at its carboxy-terminus (-HRL) and a PTS2-like signal at its amino-terminus (RIEGPFFIIHL). We have found that peroxisomal targeting of a fusion protein consisting of Eci1p in front of green fluorescent protein (GFP) is not dependent on Pex7p (the PTS2 receptor), ruling out a PTS2 mechanism, but is dependent on Pex5p (the PTS1 receptor). This Pex5p-dependence was unexpected, since the putative PTS1 of Ecilp is not at the C-terminus of the fusion protein; indeed, deletion of this signal (-HRL-) from the fusion did not affect the Pex5p-dependent targeting. Consistent with this, Pex5p interacted in two-hybrid assays with both Eci1p and Eci1PdeltaHRL. Ecilp-GFP targeting and Eci1pdeltaHRL interaction were abolished by replacement of Pex5p with Pex5p(N495K), a point-mutated Pex5p that specifically abolishes the PTS1 protein import pathway. Thus, Eci1p peroxisomal targeting does require the Pex5p-dependent PTS1 pathway, but does not require a PTS1 of its own. By disruption of ECI1 and DCI1, we found that Dci1p, a peroxisomal PTS1 protein that shares 50% identity with Eci1p, is necessary for Eci1p-GFP targeting. This suggests that the Pex5p-dependent import of Eci1p-GFP is due to interaction and co-import with Dci1p. Despite the dispensability of the C-terminal HRL for import in wild-type cells, we have also shown that this tripeptide can function as a PTS1, albeit rather weakly, and is essential for targeting in the absence of Dci1p. Thus, Eci1p can be targeted to peroxisomes by its own PTS1 or as a hetero-oligomer with Dcilp. These data demonstrate a novel, redundant targeting pathway for Eci1p.  相似文献   

11.
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.  相似文献   

12.
We report the characterization of ScPex8p, which is essential for peroxisomal biogenesis in Saccharomyces cerevisiae. Cells lacking Pex8p are characterized by the presence of peroxisomal membrane ghosts and mislocalization of peroxisomal matrix proteins of the PTS1 and PTS2 variety to the cytosol. Pex8p is tightly associated with the lumenal face of the peroxisomal membrane. Consistent with its intraperoxisomal localization, Pex8p contains a peroxisomal targeting signal 1, and it interacts with the PTS1 receptor Pex5p. However, the Pex5p/Pex8p association is also observed upon deletion of the PTS1 of Pex8p, suggesting that Pex8p contains a second binding site for Pex5p. The pex8Delta mutant phenotype and the observed PTS1-independent interaction with the PTS1 receptor suggest that Pex8p is involved in protein import into the peroxisomal matrix. In pex8Delta cells, the PTS1 and PTS2 receptor still associate with membrane bound components of the protein import machinery, supporting the assumption that the Pex8p function in protein translocation follows the docking event.  相似文献   

13.
Plant peroxisomal proteins catalyze key metabolic reactions. Several peroxisome biogenesis PEROXIN (PEX) genes encode proteins acting in the import of targeted proteins necessary for these processes into the peroxisomal matrix. Most peroxisomal matrix proteins bear characterized Peroxisomal Targeting Signals (PTS1 or PTS2), which are bound by the receptors PEX5 or PEX7, respectively, for import into peroxisomes. Here we describe the isolation and characterization of an Arabidopsis peroxin mutant, pex7-1, which displays peroxisome-defective phenotypes including reduced PTS2 protein import. We also demonstrate that the pex5-1 PTS1 receptor mutant, which contains a lesion in a domain conserved among PEX7-binding proteins from various organisms, is defective not in PTS1 protein import, but rather in PTS2 protein import. Combining these mutations in a pex7-1 pex5-1 double mutant abolishes detectable PTS2 protein import and yields seedlings that are entirely sucrose-dependent for establishment, suggesting a severe block in peroxisomal fatty acid beta-oxidation. Adult pex7-1 pex5-1 plants have reduced stature and bear abnormally shaped seeds, few of which are viable. The pex7-1 pex5-1 seedlings that germinate have dramatically fewer lateral roots and often display fused cotyledons, phenotypes associated with reduced auxin response. Thus PTS2-directed peroxisomal import is necessary for normal embryonic development, seedling establishment, and vegetative growth.  相似文献   

14.
Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  相似文献   

15.
Many posttranslational modifications (N-myristoylation or glycosylphosphatidylinositol (GPI) lipid anchoring) and localization signals (the peroxisomal targeting signal PTS1) are encoded in short, partly compositionally biased regions at the N- or C-terminus of the protein sequence. These sequence signals are not well defined in terms of amino acid type preferences but they have significant interpositional correlations. Although the number of verified protein examples is small, the quantification of several physical conditions necessary for productive protein binding with the enzyme complexes executing the respective transformations can lead to predictors that recognize the signals from the amino acid sequence of queries alone. Taxon-specific prediction functions are required due to the divergent evolution of the active complexes. The big-Pi tool for the prediction of the C-terminal signal for GPI lipid anchor attachment is available for metazoan, protozoan and plant sequences. The myristoyl transferase (NMT) predictor recognizes glycine N-myristoylation sites (at the N-terminus and for fragments after processing) of higher eukaryotes (including their viruses) and fungi. The PTS1 signal predictor finds proteins with a C-terminus appropriate for peroxisomal import (for metazoa and fungi). Guidelines for application of the three WWW-based predictors (http://mendel.imp.univie.ac.at/) and for the interpretation of their output are described.  相似文献   

16.
Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although only a small amount of Pex5p is bound to peroxisomes at steady state (< 5%), loss of Pex13p further reduces the amount of peroxisome- associated Pex5p by approximately 40-fold. Furthermore, loss of Pex13p eliminates import of peroxisomal matrix proteins that contain either the type-1 or type-2 peroxisomal targeting signal but does not affect targeting and insertion of integral peroxisomal membrane proteins. We conclude that Pex13p functions as a docking factor for the predominantly cytoplasmic PTS1 receptor.  相似文献   

17.
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1–110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.  相似文献   

18.
Two peroxisome targeting signals (PTSs) for matrix proteins have been well defined to date. PTS1 comprises a COOH-terminal tripeptide, SKL, and has been found in several matrix proteins, whereas PTS2 has been found only in peroxisomal thiolase and is contained within an NH2- terminal cleavable presequence. We have investigated the functional integrity of the import routes for PTS1 and PTS2 in fibroblasts from patients suffering from peroxisome assembly disorders. Three of the five complementation groups tested showed a general loss of PTS1 and PTS2 import. Two complementation groups showed a differential loss of peroxisomal protein import: group I cells were able to import a PTS1- but not a PTS2- containing reporter protein into their peroxisomes, and group IV cells were able to import the PTS2 but not the PTS1 reporter into aberrant, peroxisomal ghostlike structures. The observation that the PTS2 import pathway is intact only in group IV cells is supported by the protection of endogenous thiolase from protease degradation in group IV cells and its sensitivity in the remaining complementation groups, including the partialized disorder of group I. The functionality of the PTS2 import pathway and colocalization of endogenous thiolase with the peroxisomal membranes in group IV cells was substantiated further using immunofluorescence, subcellular fractionation, and immunoelectron microscopy. The phenotypes of group I and IV cells provide the first evidence for differential import deficiencies in higher eukaryotes. These phenotypes are analogous to those found in Saccharomyces cerevisiae peroxisome assembly mutants.  相似文献   

19.
Peroxisomal matrix protein transport relies on 2 cytosolic receptors, PEX5 and PEX7, which import peroxisomal targeting signal type 1 (PTS1) and PTS2-containing proteins, respectively. To better understand the transport mechanism of PEX7, we isolated PEX7 complexes using proteomics. We identified PEX5 as well as PTS1- and PTS2-containing proteins within the complex, thereby confirming the interaction between PEX5 and PEX7 during cargo transport that had been previously characterized by biochemical approaches. In addition, a chaperone T-complex and 2 small Rab GTPases were identified. We recently reported that the RabE1c is involved in the degradation of the PEX7 when abnormal PEX7 is accumulated on the peroxisomal membrane. This study expands our knowledge on the transport machinery via PEX7 by identifying both known and novel PEX7-interacting proteins and thus is helpful for further investigation of the regulation of the peroxisomal protein receptor during its translocation.  相似文献   

20.
We have established a protocol for the isolation of highly purified peroxisomes from mature Arabidopsis thaliana leaves and analyzed the proteome by complementary gel-based and gel-free approaches. Seventy-eight nonredundant proteins were identified, of which 42 novel proteins had previously not been associated with plant peroxisomes. Seventeen novel proteins carried predicted peroxisomal targeting signals (PTS) type 1 or type 2; 11 proteins contained PTS-related peptides. Peroxisome targeting was supported for many novel proteins by in silico analyses and confirmed for 11 representative full-length fusion proteins by fluorescence microscopy. The targeting function of predicted and unpredicted signals was investigated and SSL>, SSI>, and ASL> were established as novel functional PTS1 peptides. In contrast with the generally accepted confinement of PTS2 peptides to the N-terminal domain, the bifunctional transthyretin-like protein was demonstrated to carry internally a functional PTS2. The novel enzymes include numerous enoyl-CoA hydratases, short-chain dehydrogenases, and several enzymes involved in NADP and glutathione metabolism. Seven proteins, including beta-glucosidases and myrosinases, support the currently emerging evidence for an important role of leaf peroxisomes in defense against pathogens and herbivores. The data provide new insights into the biology of plant peroxisomes and improve the prediction accuracy of peroxisome-targeted proteins from genome sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号