首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Primates emerged about 60 million years ago. Since that time various primate-targeting retroviruses have integrated in the germ line of primate species, and some drifted to fixation. After germ line fixation, continued activity of proviruses resulted in intragenomic spread of so-called endogenous retroviruses (ERVs). Variant ERVs emerged, amplified in the genome and profoundly altered genome structures and potentially functionality. Importantly, ERVs are genome modifiers of exogenous origin. The human genome contains about 8% of sequences of retroviral origin. The human ERVs (HERVs) comprise many distinct families that amplified to copy numbers of up to several thousand. We review here the evolution of several well-characterized HERV families in the human lineage since initial germ line fixation. It is apparent that endogenous retroviruses profoundly affected the genomes of species in the evolutionary lineage leading to Homo sapiens.  相似文献   

3.
4.
The genomes of many species are crowded with repetitive mobile sequences. In the case of endogenous retroviruses (ERVs) there is, for various reasons, considerable confusion regarding names assigned to families/groups of ERVs as well as individual ERV loci. Human ERVs have been studied in greater detail, and naming of HERVs in the scientific literature is somewhat confusing not just to the outsider. Without guidelines, confusion for ERVs in other species will also probably increase if those ERVs are studied in greater detail. Based on previous experience, this review highlights some of the problems when naming and classifying ERVs, and provides some guidance for detecting and characterizing ERV sequences. Because of the close relationship between ERVs and exogenous retroviruses (XRVs) it is reasonable to reconcile their classification with that of XRVs. We here argue that classification should be based on a combination of similarity, structural features, (inferred) function, and previous nomenclature. Because the RepBase system is widely employed in genome annotation, RepBase designations should be considered in further taxonomic efforts. To lay a foundation for a phylogenetically based taxonomy, further analyses of ERVs in many hosts are needed. A dedicated, permanent, international consortium would best be suited to integrate and communicate our current and future knowledge on repetitive, mobile elements in general to the scientific community.  相似文献   

5.
6.
Bats are increasingly recognized as reservoir species for a variety of zoonotic viruses that pose severe threats to human health. While many RNA viruses have been identified in bats, little is known about bat retroviruses. Endogenous retroviruses (ERVs) represent genomic fossils of past retroviral infections and, thus, can inform us on the diversity and history of retroviruses that have infected a species lineage. Here, we took advantage of the availability of a high-quality genome assembly for the little brown bat, Myotis lucifugus, to systematically identify and analyze ERVs in this species. We mined an initial set of 362 potentially complete proviruses from the three main classes of ERVs, which were further resolved into 13 major families and 86 subfamilies by phylogenetic analysis. Consensus or representative sequences for each of the 86 subfamilies were then merged to the Repbase collection of known ERV/long terminal repeat (LTR) elements to annotate the retroviral complement of the bat genome. The results show that nearly 5% of the genome assembly is occupied by ERV-derived sequences, a quantity comparable to findings for other eutherian mammals. About one-fourth of these sequences belong to subfamilies newly identified in this study. Using two independent methods, intraelement LTR divergence and analysis of orthologous loci in two other bat species, we found that the vast majority of the potentially complete proviruses identified in M. lucifugus were integrated in the last ∼25 million years. All three major ERV classes include recently integrated proviruses, suggesting that a wide diversity of retroviruses is still circulating in Myotis bats.  相似文献   

7.
8.
The human genome is littered by endogenous retrovirus sequences (HERVs), which constitute up to 8% of the total genomic sequence. The sequencing of the human (Homo sapiens) and chimpanzee (Pan troglodytes) genomes has facilitated the evolutionary study of ERVs and related sequences. We screened both the human genome (version hg16) and the chimpanzee genome (version PanTro1) for ERVs and conducted a phylogenetic analysis of recent integrations. We found a number of recent integrations within both genomes. They segregated into four groups. Two larger gammaretrovirus-like groups (PtG1 and PtG2) occurred in chimpanzees but not in humans. The PtG sequences were most similar to two baboon ERVs and a macaque sequence but neither to other chimpanzee ERVs nor to any human gammaretrovirus-like ERVs. The pattern was consistent with cross-species transfer via predation. This appears to be an example of horizontal transfer of retroviruses with occasional fixation in the germ line.  相似文献   

9.
10.
Retroviral promoters in the human genome   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
Sequencing of the onion (Allium cepa) genome is challenging because it has one of the largest nuclear genomes among cultivated plants. We undertook pilot sequencing of onion genomic DNA to estimate gene densities and investigate the nature and distribution of repetitive DNAs. Complete sequences from two onion BACs were AT rich (64.8%) and revealed long tracts of degenerated retroviral elements and transposons, similar to other larger plant genomes. Random BACs were end sequenced and only 3 of 460 ends showed significant (e < -25) non-organellar hits to the protein databases. The BAC-end sequences were AT rich (63.4%), similar to the completely sequenced BACs. A total of 499,997 bp of onion genomic DNA yielded an estimated mean density of one gene per 168 kb, among the lowest reported to date. Methyl filtration was highly effective relative to random shotgun reads in reducing frequencies of anonymous sequences from 82 to 55% and increasing non-organellar protein hits from 4 to 42%. Our results revealed no evidence for gene-dense regions and indicated that sequencing of methyl-filtered genomic fragments should be an efficient approach to reveal genic sequences in the onion genome.  相似文献   

13.
14.
15.
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs’ integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.  相似文献   

16.
Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13–25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts.  相似文献   

17.
Endogenous retroviral particles (ERVs) have been detected in the genome of all eukaryotes. They are generally non-pathogenic except in mice where they have been found to induce tumors and immunological disorders. The ERVs have morphological features consistent with type-C retroviral particles and are commonly expressed in normal placental villous tissues. ERVs may have a role in the regulation of placental gene expression, syncytiotrophoblast formation, or pregnancy-related immunosuppression. In this study, well-characterized antibodies (monoclonal and polyclonal antibodies) raised against retroviral proteins (anti-HIV and anti-SIV) and endogenous retroviral (ERV) particles were assessed for their cross-reactivity (by using immunohistochemistry) with normal baboon placental and other adult tissues. The monoclonal antibodies to exogenous retroviral proteins (anti-HIV-2 gp120, anti-HIV-1 gp41, anti-SIVmac p27, anti-HIV-1 RT, and anti-HIV-2 core protein) showed specific immunohistochemical reactivity with the syncytiotrophoblast. Antibodies to endogenous retroviral gene products (anti-ERV3 env, anti-HERV-K RT, and anti-HERV-K env) also reacted in a similar manner and did not cross-react with other adult tissues. These studies have shown that retroviral-cross-reactive proteins are expressed in baboon placental syncytiotrophoblast and may have a role to play at the feto-maternal interface.  相似文献   

18.
Several families of endogenous retroviruses (ERVs) have been identified in the mouse genome, in several instances by in silico searches, but for many of them it remains to be determined whether there are elements that can still encode functional retroviral particles. Here, we identify, within the GLN family of highly reiterated ERVs, one, and only one, copy that encodes retroviral particles prone to infection of mouse cells. We show that its envelope protein confers an ecotropic host range and recognizes a receptor different from mCAT1 and mSMIT1, the two previously identified receptors for other ecotropic mouse retroviruses. Electron microscopy disclosed viral particle assembly and budding at the cell membrane, as well as release of mature particles into the extracellular space. These particles are closely related to murine leukemia virus (MLV) particles, with which they have most probably been confused in the past. This study, therefore, identifies a new class of infectious mouse ERVs belonging to the family Gammaretroviridae, with one family member still functional today. This family is in addition to the two MLV and mouse mammary tumor virus families of active mouse ERVs with an extracellular life cycle.  相似文献   

19.
Endogenous retroviruses (ERVs) are vertically transmitted intragenomic elements derived from integrated retroviruses. ERVs can proliferate within the genome of their host until they either acquire inactivating mutations or are lost by recombinational deletion. We present a model that unifies current knowledge of ERV biology into a single evolutionary framework. The model predicts the possible long-term outcomes of retroviral germline infection and can account for the variable patterns of observed ERV genetic diversity. We hope the model will provide a useful framework for understanding ERV evolution, enabling the testing of evolutionary hypotheses and the estimation of parameters governing ERV proliferation.  相似文献   

20.
Integrated retroviral genomes are flanked by direct repeats of sequences derived from the termini of the viral RNA genome. These sequences are designated long terminal repeats (LTRs). We have determined and analyzed the nucleotide sequence of the LTRs from several exogenous and endogenous avian retroviruses. These LTRs possess several structural similarities with eukaryotic and prokaryotic transposable elements: 1) inverted complementary repeats at the termini, 2) deletions of sequences adjacent to the LTR, 3) small duplications of host sequences flanking the integrated provirus, and 4) sequence homologies with transposable and other genetic elements. These observations suggest that LTRs function in the integration and perhaps transposition of retrovirus genomes. Evidence exists for the presence of a strong promoter sequence within the LTR. The retroviral LTR also contains a "Hogness box" up-stream of the capping site and a poly(A) signal. These features suggest an additional role for the LTR in the regulation of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号