首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Two estrogen receptors (ERs), denoted ERalpha and ERbeta, have been identified in humans and various animal species, including the Japanese quail. Estrogens play a key role in sexual differentiation and in activation of sexual behavior in Japanese quail. The distribution of ERalpha in the brain of male and female adult quail has previously been studied using immunohistochemistry, whereas in situ hybridization has been employed to study the distribution of ERbeta mRNA in males only. In this article, we used in situ hybridization to study the distribution of mRNAs for both ERalpha and ERbeta in brain areas controlling sexual behavior of Japanese quail. Our results show that both ERalpha mRNA and ERbeta mRNA are localized in areas important for sexual behavior, such as the preoptic area and associated limbic areas, in both males and females. Moreover, we found differences in distribution of mRNA for the two receptors in these areas. The results of this article support previously reported data and provide novel data on localization of ER mRNAs in adult quail brain of both sexes.  相似文献   

3.
Cells immunoreactive for the enzyme aromatase were localized in the forebrain of male zebra finches with the use of an immunocytochemistry procedure. Two polyclonal antibodies, one directed against human placental aromatase and the other directed against quail recombinant aromatase, revealed a heterogeneous distribution of the enzyme in the telencephalon, diencephalon, and mesencephalon. Staining was enhanced in some birds by the administration of the nonsteroidal aromatase inhibitor, R76713 (racemic Vorozole) prior to the perfusion of the birds as previously described in Japanese quail. Large numbers of cells immunoreactive for aromatase were found in nuclei in the preoptic region and in the tuberal hypothalamus. A nucleus was identified in the preoptic region based on the high density of aromatase immunoreactive cells within its boundaries that appears to be homologous to the preoptic medial nucleus (POM) described previously in Japanese quail. In several birds alternate sections were stained for immunoreactive vasotocin, a marker of the paraventricular nucleus (PVN). This information facilitated the clear separation of the POM in zebra finches from nuclei that are adjacent to the POM in the preoptic area-hypothalamus, such as the PVN and the ventromedial nucleus of the hypothalamus. Positively staining cells were also detected widely throughout the telencephalon. Cells were discerned in the medial parts of the ventral hyperstriatum and neostriatum near the lateral ventricle and in dorsal and medial parts of the hippocampus. They were most abundant in the caudal neostriatum where they clustered in the dorsomedial neostriatum, and as a band of cells coursing along the dorsal edge of the lamina archistriatalis dorsalis. They were also present in high numbers in the ventrolateral aspect of the neostriatum and in the nucleus taeniae. None of the telencephalic vocal control nuclei had appreciable numbers of cells immunoreactive for aromatase within their boundaries, with the possible exception of a group of cells that may correspond to the medial part of the magnocellular nucleus of the neostriatum. The distribution of immunoreactive aromatase cells in the zebra finch brain is in excellent agreement with the distribution of cells expressing the mRNA for aromatase recently described in the finch telencephalon. This widespread telencephalic distribution of cells immunoreactive for aromatase has not been described in non-songbird species such as the Japanese quail, the ring dove, and the domestic fowl. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The distribution of androgen receptor-like immunoreactive (AR-ir) cells in the quail brain was analyzed by immunocytochemistry with the use of the affinity-purified antibody PG-21-19A raised against a synthetic peptide representing the first 21 N-terminal amino acids of the rat and human AR. This antibody is known to bind to the receptor in the absence as well as in the presence of endogenous ligands, and it was therefore expected that a more complete and accurate characterization of AR-ir cells would be obtained in comparison with previous studies using an antibody that preferentially recognizes the occupied receptor. Selected sections were double labeled for aromatase (ARO) by a technique that uses alkaline phosphatase as the reporter enzyme and Fast blue as the chromogen. AR-ir material was detected in the nucleus of cells located in a variety of brain areas in the preoptic region and the hypothalamus including the medial preoptic (POM), the supraoptic, the paraventricular (PVN), and the ventromedial (VMN) nuclei, but also in the tuberculum olfactorium, the nucleus accumbens/ventral striatum, the nucleus taeniae, the tuberal hypothalamus, the substantia grisea centralis (GCt), and the locus ceruleus. Cells exhibiting a dense AR-ir label were also detected in the nucleus intercollicularis. Preincubation of the primary antibody with an excess of the synthetic peptide used for immunization completely eliminated this nuclear staining. A significant number of AR-ir cells in the POM, VMN, PVN, and tuberal hypothalamus also contained ARO-ir material in their cytoplasm. These data confirm and extend previous studies localizing AR in the avian brain, and raise questions about the possible regulation by androgens of the metabolizing enzyme aromatase. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 323–340, 1998  相似文献   

5.
Sexual experience modulates neuronal activity in male Japanese quail   总被引:1,自引:0,他引:1  
After an initial increase, repeated exposure to a particular stimulus or familiarity with an event results in lower immediate early gene expression levels in relevant brain structures. We predicted that similar effects would occur in Japanese quail after repeated sexual experience within brain areas involved in sexual behavior, namely, the medial preoptic nucleus (POM), the bed nucleus of stria terminalis (BST), and the nucleus taeniae of the amygdala (TnA), an avian homolog of medial amygdala. High experience subjects copulated with a female once on each of 16 consecutive days, whereas low experience subjects were allowed to copulate either once or twice. Control subjects were never exposed to a female. High experience subjects were faster to initiate sexual interaction, performed more cloacal contacts, and completed each cloacal contact faster than low experience subjects. Low experience subjects showed an increase in egr-1 (ZENK) expression, an immediate early gene product used as marker of neural activation in birds, in the areas of interest. In contrast, in high experience animals, egr-1 expression in the POM, BST, and the periaqueductal gray (PAG) was not different than the level of expression in unmated controls. These results show that experience modulates the level of immediate early gene expression in the case of sexual behavior. Our results also indicate that immediate early gene expression in specific brain areas is not necessarily related to behavioral output but depends on the behavioral history of the subjects.  相似文献   

6.
Sexual behavior in female rats depends on the action of estradiol on estrogen receptors (ERs) found in particular brain regions. While hormonal regulation of female sexual behavior requires ERalpha, the possible functions of ERbeta remain to be clarified. Mating stimulation has several behavioral and physiological consequences and induces Fos expression in many brain areas involved in the regulation of reproductive behavior and physiology. In addition, some cells in which mating induces Fos expression coexpress ERalpha. To determine whether cells in which Fos is induced by a particular mating stimulus coexpress ERalpha, ERbeta, or both, we used a triple-label immunofluorescent technique to visualize ERalpha-, ERbeta-, and mating-induced Fos-immunoreactivity (Fos-ir) in neurons in which mating stimulation reliably increases Fos expression. Ovariectomized, hormone-primed rats were either unmated, received 15 mounts, or received 15 intromissions. In the rostral medial preoptic area, Fos-ir was induced by mounts alone primarily in cells coexpressing ERalpha-ir, while Fos-ir was induced by intromissions mainly in cells coexpressing both ERalpha-ir and ERbeta-ir (ERalpha/ERbeta-ir). In the dorsal part of the posterodorsal medial amygdala, Fos-ir was induced by intromissions in cells coexpressing ERalpha-ir and ERalpha/ERbeta-ir. However, in the ventral part of the posterodorsal medial amygdala, Fos-ir was induced by intromissions primarily in cells coexpressing only ERbeta-ir. These data suggest that qualitatively different sexual stimuli may be integrated through distinct ER-containing circuits in the rostral medial preoptic area and posterodorsal medial amygdala. The diversity in coexpression of type of ER in cells in different brain areas after various mating stimuli suggests a role for both ERalpha and ERbeta in the integration of hormonal information and information related to mating stimuli.  相似文献   

7.
Testosterone has been shown to increase the volume of steroid-sensitive brain nuclei in adulthood in several vertebrate species. In male Japanese quail the volume of the male-biased sexually dimorphic medial preoptic nucleus (POM), a key brain area for the control of male sexual behavior, is markedly increased by testosterone. Previous studies assessed this effect after a period of 8–14 days but the exact time course of these effects is unknown. We asked here whether testosterone-dependent POM plasticity could be observed at shorter latencies. Brains from castrated male quail were collected after 1, 2, 7 and 14 days of T treatment (CX+T) and compared to brains of untreated castrates (CX) collected after 1 or 14 days. POM volumes defined either by Nissl staining or by aromatase immunohistochemistry increased in a time-dependent fashion in CX+T subjects and almost doubled after 14 days of treatment with testosterone while no change was observed in CX birds. A significant increase in the average POM volume was detected after only one day of testosterone treatment. The optical density of Nissl and aromatase staining was also increased after one or two days of testosterone treatment. Activation of male copulatory behavior followed these morphological changes with a latency of approximately one day. This rapid neurochemical and neuroanatomical plasticity observed in the quail POM thus seems to limit the activation of male sexual behavior and offers an excellent model to analyze features of steroid-regulated brain structure and function that determine behavior expression.  相似文献   

8.
Certain species can be induced to foster infant or neonatal animals through the process of sensitization. We induced brooding behavior in adult Japanese quail through repeated exposure to foster chicks across five 20-min trials. Brooding behavior was characterized by a bird allowing chicks to approach and remain underneath its wings while assuming a distinctive stationary crouching posture, preening, and feather fluffing. Birds who did not show brooding behavior actively avoided chicks. Among the birds that brooded chicks, females brooded chicks for longer durations compared to males. Brooding females continued a regular daily egg laying pattern; males showed no significant changes in testosterone levels after exposure to chicks. In a second experiment, we measured expression of two immediate early gene (IEG) protein products, ZENK and Fos, to identify the brain regions activated or inhibited by brooding behavior in females. ZENK and Fos expression in brooding or sensitized females (SF) were compared with expression in nonmaternal females with chicks (NMF) and with females without chicks and with blocks as control objects (BL). There was a reduced density of ZENK-like immunoreactive (ZENK-lir) cells in the medial preoptic nucleus (POM) in NMF birds. In SF birds, the density of Fos-like immunoreactive (Fos-lir) cells was elevated in the bed nucleus stria terminalis, medial portion (BSTm), and ectostriatum (E). These experiments begin to define the neural circuitry underlying brooding behavior in Japanese quail, and establish a model for future studies of the neural mechanisms of avian parental behavior.  相似文献   

9.
Progesterone and oestrogen play essential roles in the maintenance of pregnancy in eutherian mammals and are thought to exert their effects on the developing conceptus indirectly, via the endometrium. In some species, early embryos have themselves been shown to express steroid receptors, thereby suggesting that reproductive steroids may also influence embryonic development directly. The aim of this study was to determine whether early intrauterine equine conceptuses express either the classical intracellular progesterone (PR) and oestrogen receptors (ERalpha and ERbeta) or the more recently characterised membrane-bound progesterone receptors (PGRMC1 and mPR). Horse conceptuses recovered on days 7, 10 and 14 after ovulation (n=8 at each stage) were examined for steroid receptor mRNA expression using quantitative rtPCR. Where commercial antibodies were available (PR, ERbeta), receptor localisation was examined immunohistochemically in day 10, 12, 14, 15 and 16 conceptuses (n=2 at each stage). mRNA for PR, PGRMC1 and mPR was detected at all stages examined, but while PGRMC1 and mPR expression increased during the day 7-14 period, PR expression decreased. ERalpha mRNA was not detected at any stage examined, whereas ERbeta mRNA was detected in all day 14, some day 10 and no day 7 conceptuses. Immunoreactive ERbeta receptors were localised to the trophectoderm of day 14-16 conceptuses; PR were not detected immunohistochemically in conceptus tissue. In summary, this study demonstrates that equine conceptuses express mRNA and, in the case of ERbeta, protein for steroid hormone receptors during the period encompassing rapid conceptus growth, differentiation and maternal pregnancy recognition.  相似文献   

10.
In the male quail forebrain, aromatase-immunoreactive (ARO-ir) elements are clustered within the sexually dimorphic medial preoptic nucleus (POM), nucleus striae terminalis (nST), nucleus accumbens (nAc), and ventromedial and tuberal hypothalamus. These ARO-ir cells are sensitive to testosterone and its metabolites: Their number and size increase after exposure to these steroids. The POM and lateral septum are also characterized by a dense vasotocinergic innervation that is also sensitive to testosterone. We analyzed here the anatomical relationships between ARO-ir elements and VT-ir fibers in the quail prosencephalon. Sequential staining for vasotocin, aromatase, or vasotocin plus aromatase was performed on adjacent 30-μm-thick cryostat sections. High concentrations of thin VT-ir fibers were observed within the POM, nST, lateral septum, periventricular mesencephalic central gray, and ventromedial and tuberal hypothalamus. There was a close correspondence between the extension of the ARO-ir cells and of VT-ir fibers. In double-labeled sections, all clusters of ARO-ir cells with the exception of those located in the nAc were embedded in a dense network of VT-ir fibers. Many of the VT-ir terminals appeared to end in the neuropile surrounding ARO-ir elements rather than directly on their cell bodies. This study supports the idea that the testosterone-dependent aromatase system is directly innervated by a testosterone-dependent peptidergic system. Aromatase-containing cells could therefore be modulated by steroids both directly and indirectly through the vasotocin system. Alternatively, this neuroanatomical arrangement may mediate the control of vasotocin synthesis or release by steroids. Functional studies demonstrate that both aromatase and vasotocin affect reproductive behavior in quail, and the present data provide anatomical support for the integration of these effects. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 45–60, 1997  相似文献   

11.
The distribution of neurotensin-immunoreactive cells and fibers was analyzed by immunocytochemistry in the forebrain of male and female Japanese quail (Coturnix japonica) by using an antibody directed against the C-terminal part of the molecule. Immunoreactive perikarya were located almost exclusively in the medial preoptic area with small populations also being present in the nucleus paraventricularis and in the tuberal region. Immunoreactive fibers were observed not only throughout the preoptic area-hypothalamus, but also in the septal region, nucleus intercollicularis, substantia grisea centralis and the classical catecholaminergic areas of the mesencephalon, such as the area ventralis of Tsai and the nucleus tegmenti pedunculo-pontinus, pars compacta. The preoptic neurotensin-immunoreactive cells were exclusively located within the boundaries of the sexually dimorphic medial preoptic nucleus. They were significantly more numerous in females than in males. In females, the number of neurotensin cells varied during the ovulatory cycle: fewer cells were observed in birds that were about to lay an egg (they had a calcified egg in the oviduct) than in those that had already laid or were not going to lay on that day. These data indicate major variations in the expression of neurotensin in response to neurochemical or neuroendocrine changes associated with ovulation.  相似文献   

12.
By the use of ribonuclease protection assay (RPA) combined with immunohistochemical techniques, the expression of estrogen receptor (ER) alpha and ERbeta was mapped in the developing gonads and reproductive tracts of male and female mice from fetal day 14 to postnatal day 26 (PND 26). This study was designed to determine the pattern of expression of both ER subtypes in specific tissue compartments during development. In ovaries, ERalpha mRNA was detected at all ages examined; ERbeta mRNA was seen as early as PND 1, and its expression increased with age. Immunolocalization showed ERbeta in differentiating granulosa cells of the ovary, whereas ERalpha was predominantly seen in interstitial cells. The remainder of the female reproductive tract showed ERalpha mRNA at all ages examined with little or no significant levels of ERbeta, except on PND 1 when a low level of message appeared. In males, ERalpha and ERbeta mRNA were detected in the fetal testis; however, ERbeta gradually increased until PND 5 and subsequently diminished to undetectable levels by PND 26. Immunolocalization showed ERalpha in the interstitial compartment of the testis, whereas ERbeta was seen predominantly in developing spermatogonia. The remainder of the male reproductive tract showed varying amounts of both receptors by RPA and immunostaining throughout development. These studies provide information useful in studying the role of both ER subtypes in normal differentiation, and they provide indications of differential tissue expression during development.  相似文献   

13.
The medial preoptic nucleus of the Japanese quail is a testosterone-sensitive structure that is involved in the control of male copulatory behavior. The full understanding of the role played by this nucleus in the control of reproduction requires the identification of its afferent and efferent connections. In order to identify neural circuits involved in the control of the medial preoptic nucleus, we used the lipophilic fluorescent tracer DiI implanted in aldheyde-fixed tissue. Different strategies of brain dissection and different implantation sites were used to establish and confirm afferent and efferent connections of the nucleus. Anterograde projections reached the tuberal hypothalamus, the area ventralis of Tsai, and the substantia grisea centralis. Dense networks of fluorescent fibers were also seen in several hypothalamic nuclei, such as the anterior medialis hypothalami, the paraventricularis magnocellularis, and the ventromedialis hypothalami. A major projection in the dorsal direction was also observed from the medial preoptic nucleus toward the nucleus septalis lateralis and medialis. Afferents to the nucleus were seen from all these regions. Implantation of DiI into the substantia grisea centralis also revealed massive bidirectional connections with a large number of more caudal mesencephalic and pontine structures. The substantia grisea centralis therefore appears to be an important center connecting anterior levels of the brain to brain-stem nuclei that may be involved in the control of male copulatory behavior.  相似文献   

14.
Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens.  相似文献   

15.
The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic nucleus, in the septal region, and in a large cell cluster extending from the dorso-lateral aspect of the ventromedial nucleus of the hypothalamus to the tuber at the level of the nucleus inferioris hypothalami. Immunoreactive estrogen receptors (ER) were also found in each of these brain areas but their distribution was much broader and included larger parts of the preoptic, septal, and tuberal regions. In the ventromedial and tuberal hypothalamus, the majority of the ARO-ir cells (over 75%) also contained immunoreactive ER. By contrast, very few of the ARO-ir cells were double-labeled in the preoptic area and in the septum. More than 80% of the aromatase-containing cells contained no ER in these regions. This suggests that the estrogens, which are formed centrally by aromatization of testosterone, might not exert their biological effects through binding with the classical nuclear ER. The fact that significant amounts of aromatase activity are found in synaptosomes purified by differential centrifugation and that aromatase immunoreactivity is observed at the electron microscope level in synaptic boutons suggests that aromatase might produce estrogens that act at the synaptic level as neurohormones or neuromodulators.  相似文献   

16.
Estrogen receptor alpha (ERalpha) participates in the neuroendocrine regulation of male sexual behavior, primarily in brain areas located in the limbic system. Males of many species present a long-term inhibition of sexual behavior after several ejaculations, known as sexual satiety. It has been shown that androgen receptor density is reduced 24 h after a single ejaculation or mating to satiety, in the medial preoptic area, nucleus accumbens and ventromedial hypothalamus. The aim of this study was to analyze if the density of ERalpha was also modified 24 h after a single ejaculation or mating to satiety. Sexual satiety was associated with an increased ERalpha density in the anteromedial bed nucleus of the stria terminalis (BSTMA), ventrolateral septum (LSV), posterodorsal medial amygdala (MePD), medial preoptic area (MPA) and nucleus accumbens core (NAc). A single ejaculation was related to an increase in ERalpha density in the BSTMA and MePD. ERalpha density in the arcuate (Arc) and ventromedial hypothalamic nuclei (VMN), and serum estradiol levels remained unchanged 24 h after one ejaculation or mating to satiety. These data suggest a relationship between sexual activity and an increase in the expression of ERalpha in specific brain areas, independently of estradiol levels in systemic circulation.  相似文献   

17.
Kang B  Jiang DM  Liu B  Zhou RJ  Zhen L  Yang HM 《Folia biologica》2011,59(3-4):135-140
The profile of ERalpha and ERbeta gene expression in the ovaries of Zi geese at 1 day and 1,2, 3, 4, 5 and 8 months of age (n=8, respectively) was examined by quantitative real-time PCR (qRT-PCR). The results showed that the expression of ERalpha and ERbeta mRNA was greater at 1 to 5 and 8 months compared with that observed at 1 day. In particular, the level of expression of ERalpha and ERbeta at 8 months was greater, 2.47 +/- 0.23 fold and 29.07 +/- 1.25 fold, respectively, compared with that at 1 day (P<0.05). The expression of ERalpha mRNA was not significantly different at 1, 2, 3 and 4 months (P>0.05). The level of expression of ERalpha mRNA at 5 months was 1.86 +/- 0.17 fold higher than at 1 day (P<0.05). The level of expression of ERbeta mRNA at 2, 3, 4, 5 and 8 months (1.96 +/- 0.13, 2.58 +/- 0.08, 2.08 +/- 0.05, 3.25 +/- 0.11 and 29.07 +/- 1.25 fold, respectively, P<0.05) was significantly higher than at 1 day. In summary, the expression of ERalpha and ERbeta mRNA in the ovaries of geese was increased between newborn and the laying stage. These results suggest that ERalpha and ERbeta mediate the process of ovarian development and egg laying in geese. In addition, ERbeta may play a more important role in regulating the response of the ovary to estrogen during the developmental and egg-laying stages.  相似文献   

18.
We conducted a quantitative analysis of ERalpha and ERbeta mRNA expression in normal human endometrium throughout the menstrual cycle in regular menstruating premenopausal women, taking advantage of this real-time PCR assay. Endometrial dating was determined from the histology of the endometrium and classified into: proliferative endometrium and secretory endometrium. Both ERalpha and ERbeta mRNA expression were detected in all endometrial samples at both proliferative and secretion phase. However ERalpha mRNA expression level was higher than that of ERbeta specially during proliferative phase. These results suggest that estrogenic effects occur predominantly through ERalpha than ERbeta.  相似文献   

19.
20.
Although a clear role for estrogen receptor (ER) alpha has been established, the contribution of ERbeta in estrogen-dependent development, growth and functions of the myometrium is not understood. As a first step towards understanding the role of ERbeta, we have examined the expression of ERalpha and ERbeta in the human myometrium. With competitive RT-PCR assays, the level of ERbeta mRNA was 10-200 times lower than that of ERalpha mRNA in both premenopausal and postmenopausal myometrium. In premenopausal myometrium, the expression pattern of ERbeta mRNA during the menstrual cycle was similar to that of ERalpha mRNA, with highest levels in peri-ovulatory phase. In postmenopausal myometrium, ERbeta mRNA was significantly higher than it was in premenopausal myometrium, while the level of ERalpha mRNA was lower. The net result was a change in the ratio of ERbeta to ERalpha mRNA expression. The ratio changed from 0.6-1.5 in premenopausal to 2.5-7.6 in postmenopausal myometrium. In premenopausal women, the gonadotropin releasing hormone analogue, leuprorelin acetate, elicited a decrease in ERalpha and an increase in ERbeta mRNA expression to cause a postmenopausal receptor phenotype. Estradiol, on the other hand, reversed ERalpha and ERbeta mRNA expression and their ratio in postmenopausal myometrium to those of premenopausal myometrium. Immunohistochemical staining and Western blot analysis of ERalpha and ERbeta with semiquantitative analysis showed good agreement between mRNA and protein levels. The data indicate that coordinated expression of ERalpha and ERbeta might be necessary for normal estrogen action in myometrium. Furthermore, estrogen appears a dominant regulator of both receptors in the myometrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号