首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drug discovery in academia   总被引:1,自引:0,他引:1  
Drug discovery and development is generally done in the commercial rather than the academic realm. Drug discovery involves target discovery and validation, lead identification by high-throughput screening, and lead optimization by medicinal chemistry. Follow-up preclinical evaluation includes analysis in animal models of compound efficacy and pharmacology (ADME: administration, distribution, metabolism, elimination) and studies of toxicology, specificity, and drug interactions. Notwithstanding the high-cost, labor-intensive, and non-hypothesis-driven aspects of drug discovery, the academic setting has a unique and expanding niche in this important area of investigation. For example, academic drug discovery can focus on targets of limited commercial value, such as third-world and rare diseases, and on the development of research reagents such as high-affinity inhibitors for pharmacological "gene knockout" in animal models ("chemical genetics"). This review describes the practical aspects of the preclinical drug discovery process for academic investigators. The discovery of small molecule inhibitors and activators of the cystic fibrosis transmembrane conductance regulator is presented as an example of an academic drug discovery program that has yielded new compounds for physiology research and clinical development. high-throughput screening; drug development; pharmacology; fluorescence; cystic fibrosis transmembrane conductance regulator  相似文献   

2.
High-throughput screening (HTS) has historically been used by the pharmaceutical industry to rapidly test hundreds of thousands of compounds to identify potential drug candidates. More recently, academic groups have used HTS to identify new chemical probes or small interfering RNA (siRNA) that can serve as experimental tools to examine the biology or physiology of novel proteins, processes, or interactions. HTS presents a significant challenge with the vast and complex nature of data generated. This report describes MScreen, a Web-based, open-source cheminformatics application for chemical library and siRNA plate management, primary HTS and dose-response data handling, structure search, and administrative functions. Each project in MScreen can be secured with passwords or shared in an open-information environment that enables collaborators to easily compare data from many screens, providing a useful means to identify compounds with desired selectivity. Unique features include compound, substance, mixture, and siRNA plate creation and formatting; automated dose-response fitting and quality control (QC); and user, target, and assay method administration. MScreen provides an effective means to facilitate HTS information handling and analysis in the academic setting so that users can efficiently view their screening data and evaluate results for follow-up.  相似文献   

3.
EU-OPENSCREEN is an academic research infrastructure initiative in Europe for enabling researchers in all life sciences to take advantage of chemical biology approaches to their projects. In a collaborative effort of national networks in 16 European countries, EU-OPENSCREEN will develop novel chemical compounds with external users to address questions in, among other fields, systems and network biology (directed and selective perturbation of signalling pathways), structural biology (compound-target interactions at atomic resolution), pharmacology (early drug discovery and toxicology) and plant biology (response of wild or crop plants to environmental and agricultural substances). EU-OPENSCREEN supports all stages of a tool development project, including assay adaptation, high-throughput screening and chemical optimisation of the ‘hit’ compounds. All tool compounds and data will be made available to the scientific community. EU-OPENSCREEN integrates high-capacity screening platforms throughout Europe, which share a rationally selected compound collection comprising up to 300,000 (commercial and proprietary compounds collected from European chemists). By testing systematically this chemical collection in hundreds of assays originating from very different biological themes, the screening process generates enormous amounts of information about the biological activities of the substances and thereby steadily enriches our understanding of how and where they act.  相似文献   

4.
To identify small-molecule modulators of biologic systems, academic scientists are beginning to use high-throughput screening (HTS) approaches that have traditionally been used only in industry. The HTS laboratories that are being established in universities, while differing in details of staffing, equipment, and size, have all been created to attain 1 or more of 3 principal goals: drug discovery, chemical genetics, or training. This article will examine the role that these activities play in 4 HTS laboratories that have been created within the academic community of Harvard Medical School and its affiliated institutions. First, the 3 activities will be defined with special attention paid to describing the impact they are having on how academic biologic science is conducted today. Next, the histories and operations of the 4 Harvard laboratories are reviewed. In the course of these summaries, emphasis is placed on understanding the motivational role that the 3 activities initially played in the creation of the 4 Harvard facilities and the roles that the activities continue to play in their day-to-day operations. Finally, several concerns are identified that must be attended to for the successful establishment and operation of an academic biologic science that has yet to be fully determined. HTS has the ability to provide the tools to test previously untestable hypotheses and can thereby allow the discovery of the unanticipated and the truly novel.  相似文献   

5.
Publications reporting results of small-molecule screens are becoming more common as academic researchers increasingly make use of high-throughput screening (HTS) facilities. However, no standards have been formally established for reporting small-molecule screening data, and often key information important for the evaluation and interpretation of results is omitted in published HTS protocols. Here, we propose concise guidelines for reporting small-molecule HTS data.  相似文献   

6.
High content cellular screening   总被引:2,自引:0,他引:2  
Over the past few years, high content screening has firmly established itself as a high-throughput technology for the analysis of microscopy-based cellular assays. In particular, it has opened new areas of cell biology for the large-scale analysis of cellular phenotypes and has enabled the application of increasingly sophisticated assays for large-scale genetic and compound screening, benefiting both the academic and pharmaceutical research environment.  相似文献   

7.
Scott DE  Coyne AG  Hudson SA  Abell C 《Biochemistry》2012,51(25):4990-5003
Fragment-based approaches to finding novel small molecules that bind to proteins are now firmly established in drug discovery and chemical biology. Initially developed primarily in a few centers in the biotech and pharma industry, this methodology has now been adopted widely in both the pharmaceutical industry and academia. After the initial success with kinase targets, the versatility of this approach has now expanded to a broad range of different protein classes. Herein we describe recent fragment-based approaches to a wide range of target types, including Hsp90, β-secretase, and allosteric sites in human immunodeficiency virus protease and fanesyl pyrophosphate synthase. The role of fragment-based approaches in an academic research environment is also examined with an emphasis on neglected diseases such as tuberculosis. The development of a fragment library, the fragment screening process, and the subsequent fragment hit elaboration will be discussed using examples from the literature.  相似文献   

8.
Fragment-based ligand discovery constitutes a useful strategy for the generation of high affinity ligands with suitable physico-chemical properties to serve as drug leads. There is an increasing number of generic biophysical screening strategies established with the potential for accelerating the generation of useful fragment hits. Crystal structures of these hits can subsequently be used as starting points for fragment evolution to high affinity ligands. Emerging understanding of the efficiency and operative aspects of hit generation and structural characterization in FBLD suggests that this method should be well suited for academic ligand development of chemical tools and experimental therapeutics.  相似文献   

9.
Chemical genetics, or chemical biology, has become an increasingly powerful method for studying biological processes. The main objective of chemical genetics is the identification and use of small molecules that act directly on proteins, allowing rapid and reversible control of activity. These compounds are extremely powerful tools for researchers, particularly in biological systems that are not amenable to genetic methods. In addition, identification of small molecule interactions is an important step in the drug discovery process. Increasingly, the African frog Xenopus is being used for chemical genetic approaches. Here, we highlight the advantages of Xenopus as a first-line in vivo model for chemical screening as well as for testing reverse engineering approaches.  相似文献   

10.
From a collection containing more than 1500 academic compounds, in silico screening identified a hit for the human A1 adenosine receptor containing a new purine scaffold. To study the structure activity relationships of this new chemical series for adenosine receptors, a library of 24 purines was synthesized and tested in radioligand binding assays at human A1, A2A, A2B and A3 adenosine receptor subtypes. Fourteen molecules showed potent antagonism at A1, A3 or dual A1/A3 adenosine receptors. This purine scaffold is an important source for novel biochemical tools and/or therapeutic drugs.  相似文献   

11.
Mass spectrometry (MS) analysis is applicable to a broad range of biological analytes and has the important advantage that it does not require analytes to be labeled. A drawback of MS methods, however, is the need for chromatographic steps to prepare the analyte, precluding MS from being used in chemical screening and rapid analysis. Here, we report that surfaces that are chemically tailored for characterization by matrix-assisted laser-desorption ionization time-of-flight MS eliminate the need for sample processing and make this technique adaptable to parallel screening experiments. The tailored substrates are based on self-assembled monolayers that present ligands that interact with target proteins and enzymes. We apply this method to screen a chemical library against protease activity of anthrax lethal factor, and report a compound that inhibits lethal factor activity with a K(i) of 1.1 microM and blocks the cleavage of MEK1 in 293 cells.  相似文献   

12.
A lot of resources and efforts have been directed to synthesizing potentially useful new chemical entities (NCEs) by pharmaceutical scientists globally. Detailed physicochemical characterization of NCEs in an industrial setup begins almost simultaneously with preclinical testing. Most NCEs possess poor water solubility posing bioavailability issues during initial preclinical screening, sometimes resulting in dropping out of an NCE with promising therapeutic activity. Selection of right formulation approach for an NCE, based on its physicochemical properties, can aid in improving its solubility-related absorption and bioavailability issues. The review focuses on preclinical formulations stressing upon different preclinical formulation strategies and deciphers the understanding of formulation approaches that could be employed. It also provides detailed information related to a vast pool of excipients available today, which is of immense help in designing preclinical formulations. Few examples mentioned, throw light on key aspects of preclinical formulation development. The review will serve as an important guide for selecting the right strategy to improve bioavailability of NCEs for academic as well as industrial formulation scientists.  相似文献   

13.
As the most common lethal autosomal recessive disorder in North America, cystic fibrosis (CF) is an obvious candidate for general population carrier screening. Although the identification of the causative gene has made detection of asymptomatic carriers possible, the extreme heterogeneity of its mutations has limited the sensitivity of the available DNA screening tests and has called into question their utility when they are applied to patients with no family history of the disease. The purpose of this study was to determine the technical feasibility, patient acceptance and understanding, and psychosocial impact of large-scale CF carrier screening in an ethnically diverse pregnant population. A total of 4,739 pregnant women attending prenatal clinics located in both an academic medical center and a large HMO were invited in person to participate. Of this group, 3,543 received CF instruction and assessments of knowledge and mood, and 3,192 underwent DNA testing for the six most common CF mutations, by means of a noninvasive PCR-based reverse-dot-blot method. Overall participation rates (ranging from 53% at the HMO to 77% at the academic center) and consent rates for DNA testing after CF instruction (>98%) exceeded those of most other American studies. The PCR-based screening method worked efficiently on large numbers of samples, and 55 carriers and one at-risk couple were identified. Understanding of residual risk, anxiety levels, and overall satisfaction with the program were acceptable across all ethnic groups. Our strategy of approaching a motivated pregnant population in person with a rapid and noninvasive testing method may provide a practical model for developing a larger CF screening program targeting appropriate high-risk groups at the national level, and may also serve as a paradigm for population-based screening of other genetically heterogeneous disorders in the future.  相似文献   

14.
A fragment library was screened against the G protein-coupled histamine H(4) receptor (H(4)R) and the ligand-gated ion channel serotonin 5-HT(3A) (5-HT(3A)R). Interestingly, significant overlap was found between H(4)R and 5-HT(3A)R hit sets. The data indicates that dual active H(4)R and 5 HT(3A)R fragments have a higher complexity than the selective compounds which has important implications for chemical genomics approaches. The results of our fragment-based library screening study illustrate similarities in ligand recognition between H(4)R and 5-HT(3A)R and have important consequences for selectivity profiling in ongoing drug discovery efforts on H(4)R and 5-HT(3A)R. The affinity profiles of our fragment screening studies furthermore match the chemical properties of the H(4)R and 5-HT(3A)R binding sites and can be used to define molecular interaction fingerprints to guide the in silico prediction of protein-ligand interactions and structure.  相似文献   

15.
Empirical methods for building predictive models of the relationships between molecular structure and useful properties are becoming increasingly important. This has arisen because drug discovery and development have become more complex. A large amount of biological target information is becoming available through molecular biology. Automation of chemical synthesis and pharmacological screening has also provided a vast amount of experimental data. Tools for designing libraries and extracting information from molecular databases and high-throughput screening experiments robustly and quickly enable leads to be discovered more effectively. As drug leads progress down the development pipeline, the ability to predict physicochemical, pharmacokinetic and toxicological properties of these leads is becoming increasingly important in reducing the number of expensive, late development failures. Quantitative structure-activity relationship (QSAR) methods have much to offer in these areas. However, QSAR analysis has many traps for unwary practitioners. This review introduces the concepts behind QSAR, points out problems that may be encountered, suggests ways of avoiding the pitfalls and introduces several exciting, new QSAR methods discovered during the last decade.  相似文献   

16.
Intellectual property considerations decrease research productivity in subtle and unanticipated ways. Chemical probe exchange between Pharma and academia is hindered by academic IP interests. These are perceived as a subtle nuisance by the academic researcher. Novel ligands for oral targets are historically few and numbers of economically attractive oral drug targets are limited. Economically speculative targets lie in the academic domain but the medicinal chemistry to explore these in a drug discovery sense lies in Pharma and cooperation between the two is hindered by very different academic and Pharma views on chemical quality. Tools and probes for academic target validation can accommodate looser chemical quality criteria as opposed to the very strict chemical quality criteria required in Pharma drug discovery.  相似文献   

17.
Parkinson’s disease is the second most common neurodegenerative disease in the world. Beta-arrestin-2 has been reported to be an important protein involved in D2 dopamine receptor desensitization, which is essential to Parkinson’s disease. Moreover, the potential value of pharmacological inactivation of G protein-coupled receptor kinase or arrestin in the treatment of patients with Parkinson’s disease has recently been shown. We studied the interaction between D2 dopamine receptor and beta-arrestin-2 and the pharmacological regulation of chemical compounds on such interaction using capillary zone electrophoresis. The results from screening more than 40 compounds revealed three compounds that remarkably inhibit the beta-arrestin-2/D2 dopamine receptor interaction among them. These compounds are promising therapies for Parkinson’s disease, and the method used in this study has great potential for application in large-scale drug screening and evaluation.  相似文献   

18.
High-throughput screening (HTS) has become an integral part of academic and industrial efforts aimed at developing new chemical probes and drugs. These screens typically generate several 'hits', or lead active compounds, that must be prioritized for follow-up medicinal chemistry studies. Among primary considerations for ranking lead compounds is selectivity for the intended target, especially among mechanistically related proteins. Here, we show how the chemical proteomic technology activity-based protein profiling (ABPP) can serve as a universal assay to rank HTS hits based on their selectivity across many members of an enzyme superfamily. As a case study, four metalloproteinase-13 (MMP13) inhibitors of similar potency originating from a publically supported HTS and reported in PubChem were tested by ABPP for selectivity against a panel of 27 diverse metalloproteases. The inhibitors could be readily separated into two groups: (1) those that were active against several metalloproteases and (2) those that showed high selectivity for MMP13. The latter set of inhibitors was thereby designated as more suitable for future medicinal chemistry optimization. We anticipate that ABPP will find general utility as a platform to rank the selectivity of lead compounds emerging from HTS assays for a wide variety of enzymes.  相似文献   

19.
During the past years biocatalytic production of fine chemicals has been expanding rapidly. Flavours and fragrances belong to many different structural classes and therefore represent a challenging target for academic and industrial research. Here, we present a condensed overview of the potential offered by biocatalysis for the synthesis of natural and natural-identical odorants, highlighting relevant biotransformations using microorganisms and isolated enzymes. The industrial processes based on biocatalytic methods are discussed in terms of their advantages over classical chemical synthesis and extraction from natural sources. Recent applications of the biocatalytic approach to the preparation of the most important fine odorants are comprehensively covered.  相似文献   

20.
Neural networks as robust tools in drug lead discovery and development   总被引:1,自引:0,他引:1  
Empirical methods for building predictive models of the relationships between molecular structure and useful properties are becoming increasingly important. This has arisen because drug discovery and development have become more complex. A large amount of biological target information is becoming available though molecular biology. Automation of chemical synthesis and pharmacological screening has also provided a vast amount of experimental data. Tools for designing libraries and extracting information from molecular databases and high-throughput screening (HTS) experiments robustly and quickly enable leads to be discovered more effectively. As drug leads progress down the development pipeline, the ability to predict physicochemical, pharmacokinetic, and toxicological properties of these leads is becoming increasingly important in reducing the number of expensive, late-development failures. Neural network methods have much to offer in these areas. This review introduces the concepts behind neural networks applied to quantitative structure-activity relationships (QSARs), points out problems that may be encountered, suggests ways of avoiding the pitfalls, and introduces several exciting new neural network methods discovered during the last decade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号