首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

2.
Striga is a parasitic weed attacking mainly maize, sorghum, millet and cowpea. Studying the interaction between rice and Striga is valuable since rice is a model monocot. In this paper, the susceptibility of different rice cultivars to S. hermonthica was tested and quantitative trait loci (QTL) for Striga tolerance mapped on the Bala x Azucena F(6) population. Seven rice cultivars were grown with and without S. hermonthica for 14 wk. For the mapping experiment, 115 recombinant inbred lines (RILs), along with Azucena and Bala, were grown with and without Striga for 11 wk. Rice cultivars tested had different susceptibilities to Striga, ranging from highly susceptible to completely resistant. Azucena and Bala differed in the speed of Striga emergence and the impact on host growth. A genomic region between positions 139 and 166 cM on chromosome 1 was identified containing strong QTL (LOD = 4.9-15.7) for all traits measured. This indicates that genes for Striga tolerance exist in rice germplasm and the mapped QTL can be further studied to promote understanding of the nature of resistance/tolerance and breeding for Striga-resistant crop plants.  相似文献   

3.
Acombined RFLP and AFLP linkage map of an F6 recombinant inbred population, which was derived from a previously mapped F2 of a cross between the two drought resistant upland rice varieties Bala and Azucena, is presented. The map contains 101 RFLP and 34 AFLP markers on 17 linkage groups covering 1680 cM. Also presented is the approximate mapping position of a further four RFLP and 75 AFLP markers, which either could not be given a unique place on the map or for which the available data is not sufficient to allow confident positioning, and the result of quantitative trait locus (QTL) mapping of traits related to root-penetration ability. Root penetration was assessed by counting the number of root axes that penetrated a 3 mm-thick layer consisting of 80% wax and 20% white soft paraffin. Good root penetration would be expected to increase drought resistance where soil strength is high. Single-marker analysis revealed seven QTLs for the number of roots which penetrate the wax layer. In identical locations were seven QTLs for the ratio of penetrated to the total number of roots. Transgressive inheritance of positive alleles from Bala explained four of these QTLs. Comparison of the QTLs identified here with previous reports of QTLs for root morphology suggest that alleles which improve root penetration ability may also either make the roots longer or thicker. Received: 3 February 1999 / Accepted: 30 April 1999  相似文献   

4.
 We used a mapping population of 131 doubled-haploid lines, produced from a cross between an improved indica rice variety (IR64) and a traditional japonica variety (Azucena), to detect quantitative trait loci (QTLs) for resistance to the brown planthopper (BPH), Nilaparvata lugens. We evaluated the parents and mapping population with six tests that measure varying combinations of the three basic mechanisms of insect host plant resistance, i.e., antixenosis, antibiosis, and tolerance. To factor-out the effect of the major resistance gene Bph1 from IR64, the screening was done with two BPH populations from Luzon Island, The Philippines, that are almost completely adapted to this gene. A total of seven QTLs associated with resistance were identified, located on 6 of the 12 rice chromosomes. Individual QTLs accounted for between 5.1 and 16.6% of the phenotypic variance. Two QTLs were predominantly associated with a single resistance mechanism: one with antixenosis and one with tolerance. Most of the QTLs were derived from IR64, which has been shown to have a relatively durable level of moderate resistance under field conditions. The results of this study should be useful in transferring this resistance to additional rice varieties. Received: 10 May 1998 / Accepted: 4 June 1998  相似文献   

5.
The advent of saturated molecular maps promised rapid progress towards the improvement of crops for genetically complex traits like drought resistance via analysis of quantitative trait loci (QTL). Progress with the identification of QTLs for drought resistance-related traits in rice is summarized here with the emphasis on a mapping population of a cross between drought-resistant varieties Azucena and Bala. Data which have used root morphological traits and indicators of drought avoidance in field-grown plants are reviewed, highlighting problems and uncertainties with the QTL approach. The contribution of root-growth QTLs to drought avoidance appears small in the experiments so far conducted, and the limitations of screening methodologies and the involvement of shoot-related mechanisms of drought resistance are studied. When compared to Azucena, Bala has been observed to have highly sensitive stomata, does not roll its leaves readily, has a greater ability to adjust osmotically, slows growth more rapidly when droughted and has a lower water-use efficiency. It is also a semi-dwarf variety and hence has a different canopy structure. There is a need to clarify the contribution of the shoot to drought resistance from the level of the biochemistry of photosynthesis through stomatal behaviour and leaf anatomy to canopy architecture. Recent advances in studying the physical and biochemical processes related to water use and drought stress offer the opportunity to advance a more holistic understanding of drought resistance. These include the potential use of infrared thermal imaging to study energy balance, integrated and online stable isotope analysis to dissect processes involved in carbon dioxide fixation and water evaporation, and leaf fluorescence to monitor photosynthesis and photochemical quenching. Justification and a strategy for this integrated approach is described, which has relevance to the study of drought resistance in most crops.  相似文献   

6.
Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element.  相似文献   

7.
Drought is a major abiotic stress of upland rice, and good root growth has been associated with drought avoidance. We report on the genetic mapping of root growth traits in an F2 population derived from two drought-resistant rice varieties, ‘Bala’ and ‘Azucena’. Restriction fragment length polymorphism (RFLP) between the parents was 32%, and a molecular map with 71 marker loci and 17 linkage groups covering 1280 cM was produced. Quantitative trait loci (QTLs) for eight root growth characteristics were mapped using phenotype data obtained in a hydroponic screen previously described in a companion paper. Using a significance threshold of LOD 2.4, we observed one QTL for maximum root length after 28 days growth on chromosome 11. It had a LOD score of 6.9, explained nearly 30% of the variation and appeared to be largely additive in effect. QTLs for maximum root length after 3, 7, 14 and 21 days of growth were also revealed. Some root-length QTLs, including that on chromosome 11, varied greatly with developmental stage. One QTL for root volume and two QTLs for adventitious root thickness were detected. No QTLs were detected for the length of cells in the mature (fully expanded) zone of adventitious root tips. The results obtained are discussed in the context of previous reports on mapping root growth parameters in rice.  相似文献   

8.
9.
Elements in grain crops such as iron, zinc and selenium are essential in the human diet, whereas elements such as arsenic are potentially toxic to humans. This study aims to identify quantitative trait loci (QTLs) for trace elements in rice grain. A field experiment was conducted in an arsenic enriched field site in Qiyang, China using the Bala × Azucena mapping population grown under standard field conditions. Grains were subjected to elemental analysis by inductively coupled plasma mass spectroscopy. QTLs were detected for the elemental composition within the rice grains, including for iron and selenium, which have previously been detected in this population grown at another location, indicating the stability of these QTLs. A correlation was observed between flowering time and a number of the element concentrations in grains, which was also revealed as co‐localisation between flowering time QTLs and grain element QTLs. Unravelling the environmental conditions that influence the grain ionome appears to be complex, but from the results in this study one of the major factors which controls the accumulation of elements within the grain is flowering time.  相似文献   

10.
水稻生物学产量及其构成性状的QTL定位   总被引:4,自引:4,他引:0  
刘桂富  杨剑  朱军 《遗传学报》2006,33(7):607-616
QTL的加性效应、加性×加性上位性效应及它们与环境的互作效应是数量性状的重要遗传分量.利用IR64/Azucena的125个DH品系为群体,分析了水稻生物学产量及其两个构成性状干草产量和谷粒产量的遗传组成.用基于混合模型的复合区间作图(MCIM)方法进行QTL定位.检测到12个位点有加性主效应,27个位点涉及双位点互作,18个位点存在环境互作.结果表明水稻生物学产量和它的两个构成性状普遍存在上位性效应和QE互作效应.此外,还探讨了性状间相关的遗传基础.发现4个QTLs和一对上位性QTLs可能与生物学产量与干草产量之间的正相关有关.3个QTL可能与干草产量与谷粒产量之间的负相关有关.这些结果可能部分地解释了这3个性状相关的遗传原因.通过对水稻生物学产量及其两个构成性状所定位QTL的分析,加深了对数量性状QTL的认识.首先,QTL的上位性效应和QE互作效应是普遍存在的;其次,QTL的多效性或紧密连锁可能是遗传相关的原因,当QTL对两个性状作用的方向相同时可导致正向遗传相关,反之则为负向遗传相关,当有些QTL表现为同向作用而另一些QTL表现为反向作用时,则可削弱性状间的遗传相关性;第三,复合性状的QTL效应可分解为其组成性状的QTL效应,如果QTL对各组成性状的效应方向相反而相互抵消,可使复合性状的QTL效应不易被检测;第四,加性效应的QTL常参预构成上位性效应,而具有上位性效应的QTL并非都有加性主效应,表明忽略上位性的QTL定位方法会降低检测QTL的功效;最后,鉴别不同类型的QTL效应有利于指导育种实践,选择主效QTL适用于多环境,QE互作QTL适用于特定环境,对上位性QTL应强调选择基因组合而并非单个基因.  相似文献   

11.
The variation of seedling characteristics under different water supply conditions is strongly associated with drought resistance in rice (Oryza sativa L.) and a better elucidation of its genetics is helpful for improving rice drought resistance. Ninety-six doubled-haploid (DH)rice lines of an indica and japonica cross were grown in both flooding and upland conditions and QTLs for morphological traits at seedling stage were examined using 208 restriction fragment length polymorphism (RFLP) and 76 microsatellite (SSR) markers. A total of 32 putative QTLs were associated with the four seedling traits: average of three adventitious root lengths (ARL), shoot height (SH), shoot biomass (SW), and root to shoot dry weight ratio (RSR). Five QTLs detected were the same under control and upland conditions. The ratio between the mean value of the seedling trait under upland and flooding conditions was used for assessing drought tolerance. A total of six QTLs for drought tolerance were detected. Comparative analysis was performed for the QTLs detected in this case and those reported from two other populations with the same upland rice variety Azucena as parent. Several identical QTLs for seedling elongation across the three populations with the positive alleles from the upland rice Azucena were detected, which suggests that the alleles of Azucena might be involved in water stress-accelerated elongation of rice under different genetic backgrounds. Five cell wall-related candidate genes for OsEXP1, OsEXP2, OsEXP4, EXT, and EGase were mapped on the intervals carrying the QTLs for seedling traits.  相似文献   

12.
Drought resistance of rice is a complex trait and is mainly determined by mechanisms of drought avoidance and drought tolerance. The present study was conducted to characterize the genetic basis of drought resistance at reproductive stage in field by analyzing the QTLs for drought response index (DRI, normalized by potential yield and flowering time), relative yield, relative spikelet fertility, and four traits of plant water status and their relationships with root traits using a recombinant inbred population derived from a cross between an indica rice and upland rice. A total of 39 QTLs for these traits were detected with individual QTL explained 5.1–32.1% of phenotypic variation. Only two QTLs for plant water status were commonly detected in two environments, suggesting different mechanisms might exist in two types of soil conditions. DRI has no correlation with potential yield and flowering time under control, suggesting that it can be used as a good drought resistance index in field conditions. The co-location of QTLs for canopy temperature and delaying in flowering time suggested a usefulness of these two traits as indexes in drought resistance screening. Correlation and QTL congruence between root traits and putative drought tolerance traits revealed that drought avoidance (via thick and deep root traits) was the main genetic basis of drought resistance in sandy soil condition, while drought tolerance may play more role in the genetic basis of drought resistance in paddy soil condition. Therefore, both drought mechanisms and soil textures must be considered in the improvement of drought resistance at reproductive stage in rice.  相似文献   

13.
Tropospheric ozone concentrations are increasing in many Asian countries and are expected to reach levels that adversely affect crop production. Developing ozone-tolerant rice (Oryza sativa L.) varieties is therefore essential to prevent yield losses in the future. The aims of this study were to assess genotypic variation for ozone tolerance in rice, to identify quantitative trait loci (QTL) conferring tolerance, and to relate QTLs to physiological tolerance mechanisms. The response of 23 varieties to elevated ozone (120 nl l(-1)) was assessed based on leaf bronzing and dry weight loss. The traditional variety 'Kasalath' was highly tolerant, whereas the modern variety 'Nipponbare' showed significant dry weight reductions. Using the Nipponbare/Kasalath/Nipponbare mapping population, six QTLs associated with tolerance to elevated ozone were identified, of which three were subsequently confirmed in Nipponbare/Kasalath substitution lines (SLs). Two QTLs associated with leaf bronzing were located on chromosomes three and nine. Kasalath alleles on chromosome three increased bronzing, while alleles on chromosome nine reduced bronzing. SLs carrying these contrasting QTLs differed significantly in leaf ascorbic acid (AsA) content when exposed to ozone, suggesting AsA as a principal antioxidant counteracting ozone-induced oxidative damage. A further confirmed QTL related to dry weight was located on chromosome eight, where the Kasalath allele increased relative dry weight. A SL carrying this QTL exhibited a less reduced net photosynthetic rate under ozone exposure compared with its recurrent parent Nipponbare. Although the effect of these QTLs on crop yield has not yet been established, their identification could be an important first step in developing ozone-tolerant rice varieties.  相似文献   

14.
Addicive effects, additive by additive epistatic effects, and their environmental interactions of QTLs are important genetic components of quantitative traits. Genetic architecture underlying rice biomass yield and its two component traits (straw yield and grain yield) were analyzed for a population of 125 DH lines from an inter-subspecific cross of IR64/Azucena. The mixed-model based composite interval mapping approach (MCIM) was used to detect QTLs, There were 12 QTLs detected with additive main effects, 27 QTLs involved in digenic interaction with aa and/or aae effects, and 18 QTLs affected by environments with ae and/or aae effects. It was revealed that epistatic effects and QE interaction effects existed on biomass yield and its component traits in rice. In addition, the genetic basis of relationships among these traits were investigated. Four QTLs and one pair of epistatic QTLs were detected to be responsible for the positive correlation between biomass yield and straw yield. Three QTLs might be responsible for the negative correlation between straw yield and grain yield. This result could partially explain the genetic basis of correlation among the three traits, and provide useful information for genetic improvement of these traits by marker-assisted selection.  相似文献   

15.
To investigate the genetic factors underlying constitutive and adaptive morphological traits of roots under different water-supply conditions, a recombinant inbred line (RIL) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 249 molecular markers, was used in cylindrical-pot experiments. Eighteen QTLs were detected for seminal root length (SRL), adventitious root number (ARN), and lateral root length (LRL) and lateral root number (LRN) on the seminal root at a soil depth of from 3 to 6 cm under flooding and upland conditions. One identical QTL was detected under both flooding and upland conditions. The relative parameters under the two water-supply conditions were also used for QTL analysis. Five QTLs for upland induced variations in the traits were detected with the positive alleles from Azucena. A comparative analysis was performed for the QTLs detected in this study and those reported from two other populations with Azucena as a parent. Several identical QTLs for root elongation were found across the three populations with positive alleles from Azucena. Candidate genes were screened from ESTs and cDNA-AFLP clones for comparative mapping with the detected QTLs. Two genes for cell expansion, OsEXP2 and endo-1,4--D-glucanase EGase, and four cDNA-AFLP clones from root tissues of Azucena, were mapped on the intervals carrying the QTLs for SRL and LRL under upland conditions, respectively.Communicated by H.C. Becker  相似文献   

16.
Altering root system architecture is considered a method of improving crop water and soil nutrient capture. The analysis of quantitative trait loci (QTLs) for root traits has revealed inconsistency in the same population evaluated in different environments. It must be clarified if this is due to genotype × environment interaction or considerations of statistics if the value of QTLs for marker-assisted breeding is to be estimated. A modified split-plot design was used where a main plot corresponded to a separate experiment. The main plot factor had four treatments (environments), which were completely randomized among eight trials, so that each treatment was replicated twice. The sub-plot factor consisted of 168 recombinant inbreed lines of the Bala × Azucena rice mapping population, randomly allocated to the seven soil-filled boxes. The aim of the trial was to quantify QTL × environment interaction. The treatments were chosen to alter partitioning to roots; consisting of a control treatment (high-soil nitrogen, high light and high-water content) and further treatments where light, soil nitrogen or soil water was reduced singly. After 4 weeks growth, maximum root length (MRL), maximum root thickness, root mass below 50 cm, total plant dry mass (%), root mass and shoot length were measured. The treatments affected plant growth as predicted; low nitrogen and drought increased relative root partitioning, low-light decreased it. The parental varieties Bala and Azucena differed significantly for all traits. Broad-sense heritability of most traits was high (57–86%). Variation due to treatment was the most important influence on the variance, while genotype was next. Genotype × environment interaction was detected for all traits except MRL, although the proportion of variation due to this interaction was generally small. It is concluded that genotype × environment interaction is present but less important than genotypic variation. A companion paper presents QTL × environment analysis of data.  相似文献   

17.
To investigate the genetic background for aluminum (Al) tolerance in rice, a recombinant inbred (RI) population, derived from a cross between an Al-sensitive lowland indica rice variety IR1552 and an Al-tolerant upland japonica rice variety Azucena, was used in culture solution. A molecular linkage map, together with 104 amplified fragment length polymorphism (AFLP) markers and 103 restriction fragment length polymorphism (RFLP) markers, was constructed to map quantitative trait loci (QTLs) and epistatic loci for Al tolerance based on the segregation for relative root length (RRL) in the population. RRL was measured after stress for 2 and 4 weeks at a concentration of 1mM of Al3+ and a control with a pH 4.0, respectively. Two QTLs were detected at both the 2nd and the 4th weeks on chromosomes 1 and 12 from unconditional mapping, while the QTL on chromosome 1 was only detected at the 2nd stress week from conditional mapping. The effect of the QTL on chromosome 12 was increased with an increase of the stress period from 2 to 4 weeks. The QTL on chromosome 1 was expressed only at the earlier stress, but its contribution to tolerance was prolonged during growth. At least one different QTL was detected at the different stress periods. Mean comparisons between marker genotypic classes indicated that the positive alleles at the QTLs were from the Al-tolerant upland rice Azucena. An important heterozygous non-allelic interaction on Al tolerance was found. The results indicated that tolerance in the younger seedlings was predominantly controlled by an additive effect, while an epistatic effect was more important to the tolerance in older seedlings; additionally the detected QTLs may be multiple allelic loci for Al tolerance and phosphorus-uptake efficiency, or for Al and Fe2+ tolerance. Received: 29 July 1999 / Accepted: 13 October 1999  相似文献   

18.
A population of recombinant inbred rice lines from a cross between the upland japonica cultivar Azucena and the upland indica cultivar Bala was evaluated in a series of upland field experiments. Water stress was imposed during the reproductive stage by managed irrigation during the dry season, while control treatments were maintained in aerobic, well-irrigated conditions. Water deficit resulted in a yield reduction of 17 to 50%. The genetic correlation between stress and control yields was quite high when stress was mild, and the heritability of yield was similar in stress and control treatments across both years of this study. Genetic correlations between secondary traits such as leaf rolling and drying and yield under stress varied from high (leaf drying) to insignificant (leaf rolling). Lines with superior yield tended to have fewer panicles and larger grain size than the high-yielding parent, Bala, even though the panicle number was positively correlated with yield and the thousand-grain weight was not associated with yield for the population as a whole. Analysis of quantitative trait loci (QTLs) for yield and yield components allowed the identification of 31 regions associated with growth or yield components. Superior alleles came from either parent. Several of the regions identified had also been reported for root mass at depth or maximum root length in this population in other studies made under controlled environments, and for leaf drying (LD) in field studies. However, the direction of the effect of QTLs was not consistent, which indicates that there was not necessarily a causal relationship between these secondary traits and performance. We conclude that mapping populations can provide novel insights on the actual relationships between yield components and secondary traits in stress and control environments and can allow identification of significant QTLs for yield components under drought stress.Abbreviations DAS Days after sowing - GPP Grains per panicle - QTL Quantitative trait locus - RWC Relative water content - SPP Spikelets per panicle - TGW Thousand-grain weight - VPD Vapor pressure deficit  相似文献   

19.
Rice blast disease is a major constraint for rice breeding. Nevertheless, the genetic basis of resistance remains poorly understood for most rice varieties, and new resistance genes remain to be identified. We identified the resistance gene corresponding to the cloned avirulence gene ACE1 using pairs of isogenic strains of Magnaporthe grisea differing only by their ACE1 allele. This resistance gene was mapped on the short arm of rice chromosome 8 using progenies from the crosses IR64 (resistant) × Azucena (susceptible) and Azucena × Bala (resistant). The isogenic strains also permitted the detection of this resistance gene in several rice varieties, including the differential isogenic line C101LAC. Allelism tests permitted us to distinguish this gene from two other resistance genes [Pi11 and Pi-29(t)] that are present on the short arm of chromosome 8. Segregation analysis in F2 populations was in agreement with the existence of a single dominant gene, designated as Pi33. Finally, Pi33 was finely mapped between two molecular markers of the rice genetic map that are separated by a distance of 1.6 cM. Detection of Pi33 in different semi-dwarf indica varieties indicated that this gene could originate from either one or a few varieties.Communicated by D.J. Mackill  相似文献   

20.
Molecular Breeding - Meloidogyne graminicola is one of the most important plant-parasitic nematodes in rice. Breeding for natural resistance and tolerance is considered one of the most economical...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号