首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The genes for two protamines (PRM1 and PRM2) and for two transition proteins (TNP1 and TNP2) have been characterized in several mammalian species. In the human, boar, and bull, the genes for PRM1, PRM2, and TNP2 are closely linked over a stretch of DNA 13-15 kb long. Although similar data are not yet available for the mouse and rat, our results suggest that the three genes are similarly linked in these species. The gene for TNP1 in all species studied is located on another chromosome.  相似文献   

5.
6.
We have cloned a cDNA probe for human apolipoprotein AII and used it to analyze linkage relationships on chromosome 1. We found no recombinations between APOA2 and the gene coding for the Duffy blood group antigens (FY) in the 19 meioses examined. Our maximal lod score is 4.2 at zero recombination rate. K. Berg (1987, Cytogenet. Cell Genet. 46:579) found a maximal score of 2.5 at recombination fraction 0.14 in 54 meioses. When results from both studies are combined, the most likely distance between FY and APOA2 is about 10% recombination with a combined lod score of 5.6 for both sexes.  相似文献   

7.
We isolated many genes induced from pepper cDNA microarray data following their infection with the soybean pustule pathogen Xanthomonas axonopodis pv. glycines 8ra. A full-length cDNA clone of the Capsicum annuum ankyrin-repeat domain C(3)H(1) zinc finger protein (CaKR1) was identified in a chili pepper using the expressed sequence tag (EST) database. The deduced amino acid sequence of CaKR1 showed a significant sequence similarity (46%) to the ankyrin-repeat protein in very diverse family of proteins of Arabidopsis. The gene was induced in response to various biotic and abiotic stresses in the pepper leaves, as well as by an incompatible pathogen, such as salicylic acid (SA) and ethephon. CaKR1 expression was highest in the root and flower, and its expression was induced by treatment with agents such as NaCl and methyl viologen, as well as by cold stresses. These results showed that CaKR1 fusion with soluble, modified green fluorescent protein (smGFP) was localized to the cytosol in Arabidopsis protoplasts, suggesting that CaKR1 might be involved in responses to both biotic and abiotic stresses in pepper plants.  相似文献   

8.
During bell pepper (Capsicum annuum L.) fruit ripening, beta-galactosidase activity increased markedly as compared with other glycosidases. We purified 77.5 kDa exo-1,4-beta-D-galactanase from red bell pepper fruit classified as beta-galactosidase II. A marked decrease in galactose content appeared during fruit ripening, especially in the pectic fraction. The purified enzyme hydrolyzed a considerable amount of galactose residues in this fraction. We isolated bell pepper beta-galactosidase (PBG1) cDNA. This PBG1 protein contained the putative active site, G-G-P-[LIVM]-x-Q-x-E-N-E-[FY], belonging to glycosyl hydrolase family 35. Quantitative RT-PCR revealed that the expression of PBG1 in red fruit was significantly stronger than that from any other tissues. Moreover, expression of PBG1 occurred prior to that of pepper endo-polygalacturonase 1 (PPG1), the major fruit-ripening enzyme. Based on these results, it appears that the hydrolysis of galactose residues in pectic substances is the first event in the ripening process in bell pepper fruit.  相似文献   

9.
An acid invertase (EC 3.2.1.26.) cDNA clone,CaAIV-18, was isolated from the red pericarp cDNA library of the hot pepper (Capsicum annuum L.) fruit. TheCaAIV-18 clone has 2223 nucleotides and one open reading frame encoding 641 amino acid residues. Analysis of deduced amino acid sequences reveals thatCaAIV-18 has a 24-amino acid transmembrane anchor region in its N-terminal, implying acid invertase in hot pepper may be localized in the membrane and not in the cytosol. This clone showed high homology to tomato acid invertase,Aiv1, in nucleotide and deduced amino acid sequences. In the Southern blot analysis, this clone proved to exist as single or low copy numbers on the genome of hot pepper. The clones had two well-conserved regions which appears in acid invertase of other plant species (eg. tomato,Arabidopsis, etc.) and yeasts. During fruit development,CaAIV-18 was expressed preferentially in the ripe red stage.  相似文献   

10.
Sesquiterpene phytoalexins, a class of plant defense metabolites, are synthesized from the cytosolic acetate/mevalonate pathway in isoprenoids biosynthetic system of plants. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the synthesis of mevalonate, which is the specific precursor of this pathway, as a multi gene family. Three kinds of cDNA clones encoding HMGR were isolated from Korean red pepper (Capsicum annuum L. cv. NocKwang) and the HMGR2 gene (Hmg2) was especially obtained from a cDNA library constructed with Phytophthora capsici-infected pepper root RNAs. The Hmg2 encoding a 604-amino-acid peptide had typical features as an elicitor-induced isoform among HMGRs on its gene structure and had a predicted amino acid sequence homology. In addition, the expression of Hmg2 was rapidly induced within 1 h in response to a fungal pathogen and continuously increased up to 48 h. Together with sesquiterpene cyclase gene that was strongly induced 24 h after pathogen-infection, the Hmg2 and farnesyl pyrophosphate synthase gene were coordinately and sequentially regulated for the biosynthesis of defense-related sesquiterpene phytoalexins in pepper.  相似文献   

11.
12.
13.
14.
辣椒离体培养及再生体系的研究   总被引:8,自引:0,他引:8  
选用9个辣椒(Capsicum annuumL.)品种(系),研究了不同激素组合、基因型、外植体类型、苗龄和Ag-NO3等因素对外植体不定芽分化和伸长的影响.结果表明,在6-BA/IAA为10∶1配比下,有利于辣椒外植体的分化再生,而6-BA/IAA为3∶1配比下适合于再生芽的伸长;不同品种辣椒的再生能力差别较大,分化率在13.3%~90.0%之间;辣椒子叶再生能力比下胚轴强,是较好的外植体材料;12~16 d苗龄的外植体分化频率较高;添加4mg?L-1AgNO3可使芽分化率平均提高16.9%.通过比较,筛选出了适合于辣椒芽分化的培养基为MB5(MS无机盐 B5有机成分) 5 mg?L-16-BA 0.5 mg?L-1IAA 4 mg?L-1AgNO3,芽伸长培养基为MB5 3 mg?L-16-BA 1 mg?L-1IAA 2 mg?L-1GA3 4 mg?L-1AgNO3,生根培养基为1/2 MS 0.2 mg?L-1IAA 0.1 mg?L-1NAA.  相似文献   

15.
The biosynthesis of phylloquinone (vitamin K1) was examined using Capsicum fruit chloroplasts and chromoplasts (apparently phylloquinone free). In both cases, the synthesis of phylloquinone from -naphthoquinone, dihydro--naphthoquinone, 1,4-dihydroxy-2-naphthoic acid (as precursors of the ring moiety) and (S)-adenosyl-L-methionine was achieved. In the presence of phytylpyrophosphate, the biosynthesis of phylloquinone in both organelles is particularly enhanced when 1,4-dihydroxy-2-naphthoic acid is used.  相似文献   

16.
The root-knot nematode (Meloidogyne spp.) is a major plant pathogen, affecting several solanaceous crops worldwide. In Capsicum annuum, resistance to this pathogen is controlled by several independent dominant genes—the Me genes. Six Me genes have previously been shown to be stable at high temperature in three highly resistant and genetically distant accessions: PI 322719, PI 201234, and CM334 (Criollo de Morelos 334). Some genes (Me4, Mech1, and Mech2) are specific to certain Meloidogyne species or populations, whereas others (Me1, Me3, and Me7) are effective against a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita, the most common species in Mediterranean and tropical areas. These genes direct different response patterns in root cells depending on the pepper line and nematode species. Allelism tests and fine mapping using the BSA-AFLP approach showed these genes to be different but linked, with a recombination frequency of 0.02–0.18. Three of the PCR-based markers identified in several genetic backgrounds were common to the six Me genes. Comparative mapping with CarthaGene software indicated that these six genes clustered in a single genomic region within a 28 cM interval. Four markers were used to anchor this cluster on the P9 chromosome on an intraspecific reference map for peppers. Other disease resistance factors have earlier been mapped in the vicinity of this cluster. This genomic area is colinear to chromosome T12 of tomato and chromosome XII of potato. Four other nematode resistance genes have earlier been identified in this area, suggesting that these nematode resistance genes are located in orthologous genomic regions in Solanaceae.  相似文献   

17.
18.
Carbon Partitioning and Export in Mature Leaves of Pepper (Capsicum annuum)   总被引:1,自引:0,他引:1  
The partitioning of recently fixed carbon by mature pepper leaveshas been examined over a 10 h photoperiod using a constant specificradioactivity 14CO2 labelling technique. Changes in the ratesof carbon partitioning into export, starch, sucrose and hexoseswere examined following changes in irradiance during the photoperiod.Leaves grown under 80 W m–2 PAR were exposed to this irradiancefor the first 4 h of the photoperiod then the iiradiance wasdecreased. Leaves accumulated sufficient reserves in the first4 h to maintain export at the initial rate (approximately 20µg carbon cm–2 leaf h–1) over the following6 h of the photoperiod when the net photosynthesis rate (Pn)was decreased to 10% of the initial rate by the decreased irradiance.Export was initially maintained by the depletion of sucroseand hexose and then by carbon from the degradation of starchin the light. If leaves were exposed to low irradiance at the beginning ofthe photoperiod, then the export rate was linearly related tothe Pn during that period. When Pn exceeded that required tomaintain an export rate of approximately 20 µg carboncm–2 h–1, then more carbon was partitioned intostarch. At low initial irradiance, a greater proportion of photosynthatewas partitioned into export rather than starch and at high initialirradiancc the reverse occurred. There was a linear relationship between starch accumulationrate and Pn for all leaves but the relationship between Pn andexport rate was only significant for leaves with low levelsof reserve carbon. The results show that mature pepper leaves subjected to differentirradiances maintain constant export rates through alterationsof carbon partitioning. Export at low Pn is maintained at theexpense of sugar and starch reserves, with partitioning in highirradiance being predominantly to starch. Key words: Carbon partitioning, Starch, Export, Pepper (Capsicum annuum L.)  相似文献   

19.
Shikimate dehydrogenase (SKDH, EC 1.1.1.25) was extracted from seedlings of pepper ( Capsicum annuum L.) and purified 347-fold. The purification procedure included precipitation with ammonium sulphate and chromatography in columns of Reactive Red-agarose, Q-Sepharose and Sephadex G-100. Pepper SKDH isozymes are separable only using PAGE. The purified enzyme has a relative molecular mass of 67 000 as estimated by gel filtration. The optimum pH of enzyme activity is 10.5 and the optimum temperature is 50°C, but the enzyme is quickly inactivated at temperatures higher than 40°C. The purified enzyme exhibited typical Michaelis-Menten kinetics and Km values are 0.087 m M for shikimic acid and 0.017 m M for NADP. The mechanism of reaction is sequential considering NADP as a cosubstrate. Ions such as Ca2+, Mg2+ and Mn2+ activate the enzyme, but Zn2+ and Cu2+ are strong inhibitors. Some phenolic compounds such as guaiacol, protocatechuic acid and 2,4-D are competitive inhibitors of pepper SKDH, showing Ki values of 0.38 m M , 0.27 m M and 0.16 m M , respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号