首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surficial sediment (0–10 cm) of shallow eutrophic Lake Võrtsjärv (Estonia) was characterized by an acid insoluble residue of 50% dry weight and low nutrient, Fe and Mn content. Among phosphorus (P) fractions (Hieltjes and Lijklema , 1980), NaOH-NRP amounted on an average to 50%, HCl-RP to 30%, NaOH-RP to 16%, and NH4Cl-RP to 4% of their sum. Seasonal changes in sediment P content were inconsistent with mass balance calculations and could be attributed to sediment redistribution caused by decreasing water level. High Fe/P ratio (26–30) and the aeration of surficial sediment by frequent resuspension kept phosphate adsorbed. Low pore-water SRP (commonly <10 μg l−1) usually prevented phosphate release from surficial sediment. However, a storm in September 1996 (max. wind speed 16 m s−1) which coincided with the extremely low water level in the lake (mean depth 1.44 m), denuded deeper anoxic sediment layers and caused a SRP release of 193 mg P m−2 d−1.  相似文献   

2.
Phosphorus speciation in Myall Lake sediment, NSW, Australia   总被引:1,自引:0,他引:1  
The amount of phosphorus and its fractions in the sediment of Lake Myall, NSW, Australia, was assessed using a sequential extraction technique. Five sedimentary phosphorus reservoirs were measured, namely loosely sorbed phosphorus (NH4Cl–P), iron associated phosphorus (BD–P), calcium bound phosphorus (HCl–P), metal oxide bound phosphorus (NaOH–P) and residual phosphorus (organic and refractory P, Res-P). Samples were taken from the deep and shallow sites of the lake. During the analysis, the average concentrations of each fraction of phosphorus was calculated. The results depicted that the total phosphorus (TP) content and chemically extractable phosphorus in both fine and coarse sediment fractions from the deep sites of the lake were significantly higher than those of the shallow sites, except for HCl–P extracted from the fine sediment fraction. Sediment TP was also strongly and positively correlated to sediment Fe. The phosphorus in the sediment mainly consisted of BD–P and Res-P, while NH4Cl–P and HCl–P only contributed a minor part. The rank order of the different phosphorus extracts was similar for the two sites, namely Residual-P > BD–P > NaOH–P > HCl–P > NH4Cl–P.  相似文献   

3.
The concentration of major elements (Si, Al, Ca, Mg, Na, K, Fe, Ti, Mn and P), particulate phosphorus forms (NH4Cl-RP, BD-RP, NaOH-RP, HCl-RP and NaOH(85)-RP) and carbon content were determined in six size fractions (<8, 8–12, 12–19, 19–31, 31–42 and 42–<60 µm) of sediment collected at gauging stations located in two Lake Erie tributaries (Big Creek and Big Otter Creek). Concentrations of major elements and phosphorus forms were remarkably similar in sediment size fractions from both rivers. Nonapatite inorganic P (NAIP) and organic P (OP) concentrations increased with decreasing grain size while apatite inorganic P (AIP) content decreased with decreasing grain size. Results of phosphorus fractionation studies were combined with historical (particle size) and hydrometric data to simulate the export of particle P on tributary sediment < 63 µm. AIP represents 67 and 70% of the calculated particulate P mass while NAIP accounts for 26 and 23% of sediment-bound P transported in Big Otter Creek and Big Creek, respectively. The < 8 µm size fraction of tributary sediment is the most significant for the potential release of bioavailable P into the water column.  相似文献   

4.
To investigate the effective depth from the surface sediment, and phosphorus fractions related to phosphorus release under short-term anoxic conditions, varying lengths of sediment cores taken from Lake Kasumigaura, a large shallow polymictic lake in Japan, were incubated for a few weeks and then analyzed. Results showed few differences in total phosphorus (TP) amount per unit area in overlying waters irrespective of the core thickness, and sums of TP in both overlying water and 0- to 2-cm sediment layers were nearly equal before and after the experiment, indicating that phosphorus was released mainly from the 0- to 2-cm layer by dissolution. In contrast, phosphorus was decreased in pore water below a 2-cm depth, probably through sorption to sediment solids. The citrate-dithionite-bicarbonate total phosphorus (CBD-TP) and non-reactive phosphorus extracted by NaOH (NaOH-NRP) in sediment solids in the 0- to 2-cm layer decreased during the experiment. The decreases of CBD-TP were 10 times higher than those of NaOH-NRP, suggesting that the released phosphorus came mainly from the fraction bound to iron in Lake Kasumigaura.  相似文献   

5.
During each of the first 8 years following an 80–90% reduction in external phosphorus loading of shallow, hypertrophic Lake Søbygaard, Denmark in 1982, phosphorus retention was found to be negative. Phosphorus release mainly occurred from April to October, net retention being close to zero during winter. Net internal phosphorus loading was 8 g P m–2 y–1 in 1983 and slowly decreased to 2 g P m–2 y–1 in 1990, mainly because of decreasing sediment phosphorus release during late summer and autumn. The high net release of phosphorus from Lake Søbygaard sediment is attributable to a very high phosphorus concentration and to a high transport rate in the sediment caused by bioturbation and gas ebullition. Sediment phosphorus concentration mainly decreased at a depth of 5 to 20 cm, involving sediment layers down to 23 cm. Maximum sediment phosphorus concentration, which was 11.3 mg P g–1 dw at a depth of 14–16 cm in 1985, decreased to 8.6 mg P g–1 dw at a depth of 16–18 cm in 1991. Phosphorus fractionation revealed that phosphorus release was accompanied by a decrease in NH4Cl-P + NaOH-P and organic phosphorus fractions. HCl-P increased at all sediment depths. The Fe:P ratio in the superficial layer stabilized at approximately 10. Net phosphorus release can be expected to continue for another decade at the present release rate, before an Fe:P ratio of 10 will be reached in the sediment layers from which phosphorus is now being released.  相似文献   

6.
Klamt  Anna-Marie  Hilt  Sabine  Moros  Matthias  Arz  Helge W.  Hupfer  Michael 《Biogeochemistry》2019,143(3):371-385

In shallow lakes, increasing phosphorus (P) loading has often been accompanied by a shift from a clear-water, macrophyte-dominated state to a turbid state featuring phytoplankton dominance. The effect of a regime shift on P burial and P fractions in lake sediments, however, is poorly understood. We used sediment cores from a eutrophic hard-water lake (Lake Gollinsee, Germany) that had undergone a regime shift (in approximately 1917) to investigate the effect on the accumulation rate of P and on changes in P forms. The cores were dated using Hg contents and radioisotopes (210Pb, 137Cs, and 241Am). A combination of total organic carbon to total nitrogen ratios (TOC:TN), δ13TOC values, X-ray fluorescence calcium (Ca) counts, and sediment colour clearly distinguished sediment layers that were deposited during periods of macrophyte or phytoplankton dominance. The accumulation rate of total P (TP) in the sediments was 1.8 times higher after the regime shift and was associated with changes in the distribution of P fractions. The proportions of loosely-(NH4Cl-extracted TP) and Ca-(HCl-extracted TP) bound P decreased significantly, whilst the proportions of biogenic P (NaOH-extracted NRP) and aluminium-bound P (NaOH-extracted SRP) increased significantly. A higher dry mass deposition rate, reduced burial of stable Ca-P complexes, and increased contents and proportions of the mobile iron-bound (BD-extracted TP) and biogenic P fractions in the near-surface sediment layers are assumed to have enhanced the internal cycling of P and hence to have helped to maintain a state of phytoplankton dominance.

  相似文献   

7.
Total oxygen deficit occurred regularly during stagnation periods in the deepest part of Lake Kallavesi in the period 1973–1986. The sediment was black and anaerobic during the first sampling in 1987. After beginning of artificial lake oxygenation and efficient purification of waste waters of a paper board mill in 1986 the oxygen deficit decreased gradually and a light brown oxidized uppermost sediment layer appeared and began to thicken. The following changes in the sediment composition were observed during 1987–1996: loss on ignition, total nitrogen and BOD7 concentrations decreased in the uppermost sediment layer (0–2 cm) and BOD7 concentration increased in the next sediment layer beneath (2–10 cm). There were no significant change in phosphorus and iron concentrations.Lake oxygen, total phosphorus and suspended solids concentrations fluctuated in a noticeable degree in Lake Huruslahti depending on waste water input and artificial oxygenation during the years 1980–1993. Oxygen condition was good at times of successful waste water elimination and lake oxygenation while deterioration of either resulted oxygen deficiency as well as increase of total phosphorus and suspended solids concentration. Most of the internal load entered with suspended solids during periods of total oxygen deficiency.An explanation for the findings in Lake Huruslahti could be microbiological. Gas formation inside sediment lift organic material towards top of the sediment and into the water, but after the lake recovery the material retain in the sediment. Also in Lake Kallavesi microbiological gas formation resuspended sediment particles with phosphorus into the overlaying water prior to oxygenation. During oxygenation microbiological processes in uppermost sediment utilize the anaerobic metabolic products, organic acids and methane, and block gas formation. Organic substances remain in the top sediment decomposing gradually in the uppermost layer.  相似文献   

8.
植物残体添加和去除试验(The Detritus Input and Removal Treatments, DIRT)是研究地上凋落物以及植物根系对土壤营养物质循环过程及机制探究的一种试验设计。于2012年6月选择福建省三明森林生态系统与全球变化研究站的米槠常绿阔叶天然林,设置5种处理:对照(CT)、去除凋落物(NL)、去除根系(NR)、去除凋落物与根系(NI)、添加双倍凋落物(DL),在2018年12月对各处理不同土层(0—10cm、10—20cm)土壤磷组分及其影响因子进行研究,结果表明:(1)在0—10cm土层中DL处理总磷含量显著大于NL处理,NI处理无机磷含量最低,在10—20cm中DL处理有机磷含量显著大于其他处理;(2)DL处理活性磷(Resin-P、NaHCO3-Pi、NaHCO3-Po)含量在0—10cm土层中显著大于其他处理。在10—20cm土层中NR处理活性磷以及中等活性磷显著大于NL处理。残留态磷(Residual-P)含量最高,但在各处理与土层之间并没有明显差异;(3)酸性磷酸酶在0—10 cm土层不同处理间的变化...  相似文献   

9.
The relationships of the halocline to both water quality and phytoplankton composition in Lake Obuchi, a shallow brackish lake in northern Japan, were investigated from April 2001 to December 2004. The halocline in this lake became stronger in summer (July–September, mean maximum density gradient 4.3–5.8 ρtm−1) but weaker in spring, fall, and winter (1.9–3.3 ρtm−1). Although the difference in water quality between the upper and lower layers separated by the halocline was high in summer, nutrients (PO43−-P and NH4+-N) were eluted from the bottom sediment as levels of dissolved oxygen decreased in the bottom layer because of the strong stratification caused by the halocline formed over the long term. Moreover, phytoplankton taxa composition also differed between the upper and lower layers in summer, but was similar in other seasons. The dominant phytoplankton taxa in the upper layer in summer were Skeletonema costatum and Cyclotella spp., whereas in the lower layer, Gymnodinium spp. (Dinophyceae) and Chlorophyceae, which prefer eutrophic and low dissolved oxygen conditions, dominated. This suggests that the halocline was related to differentiations in both water quality and ecosystem components between the upper and lower layers in the brackish lake water.  相似文献   

10.
Xia Z Y  Zhou Y Y  Chen F  Song C L  Li J Q 《农业工程》2012,32(3):138-143
Phosphorus loadings in sediments play an important role in lake eutrophication and the progress of its recovery. The phosphorus release is controlled by physical, chemical and biological mechanisms. Alkaline phosphatase catalyzes remineralization of organic phosphorus and then it may be an important factor accelerating phosphorus cycling in sediments. In this paper, distributions, properties and function of alkaline phosphatase with depths in sediments of two urban lakes were discussed. Alkaline phosphatase activity (APA) in the sediments of Lake Yuehu decreased with the sediment depth. APA in sediments of Lake Yuehu was, mostly, inhibited by Phe and L-Cys; and inhibiting ability of Phe could be stronger than L-Cys. APA in deeper layer (20–30 cm) of sediments was more sensitive to the inhibitors than other layers, but range of variation in APA was most wide in the subsurface layer (10–20 cm). All the facts implied that alkaline phosphatase occurred in various forms (isoenzymes). APA in the sediments with different depths of Lake Donghu responded Phe differently. Reacted with Phe and incubated for 1 day, the amounts of SRP released by these sediments varied correspondingly. SRP on the overlying water in deeper layers (5–10 cm and 15–20 cm) of Site T1 was higher than that in surface layer (0–5 cm) of the same site, 1 day after incubation. Hence, the SRP release resulted, at least partially, from the hydrolysis of some liable organic phosphorus mediated by APA. Alkaline phosphatase in lake sediments plays an important role in the release of internal phosphorus loadings and eutrophication. A possible explanation for the sensitivity at deeper layers could be another active region of hydrolysis by alkaline phosphatase from organic phosphorus, which added a new dimension in phosphorus cycling mediated by some biochemical mechanisms.  相似文献   

11.
Sediment and water column phosphorus fractions were recorded monthly for one year (April 2004–April 2005) in a shallow lake recovering from nutrient pollution (Loch Leven, Scotland). Equilibrium phosphate concentration (EPC0) and gross sediment phosphorus (P) release rates were estimated from laboratory experiments. Pore water and organic P pools were lowest during warm water periods whereas bottom water P was lowest during cold water periods. Reductant-soluble, organic, metal oxide-adsorbed, residual and sediment total phosphorus pools all varied significantly with overlying water depth. Short-term, high magnitude, redox initiated P release events occurred in late summer and winter as a result of anoxic sediment conditions. Lower magnitude long-term release conditions were maintained for most of the year, most likely as a result of organic P cycling and maintenance of high concentration gradients between the pore and bottom water P pools. Estimates of summer P uptake/release rates, across an intact sediment-water interface, suggested that maximum gross internal release was ~12 mg SRP m−2 lake surface area d−1 with EPC0 values ranging between 180 and 270 μg P L−1. This study highlights the biological mediation of internal loading in shallow eutrophic lakes, and in particular, the role of sediment algae in decreasing, and sediment bacteria in enhancing, sediment P release.  相似文献   

12.
Nitrogen flux from sediment of a shallow lake and subsequent utilization by water hyacinth (Eichhornia crassipes [Mart] Solms) present in the water column were evaluated using an outdoor microcosm sediment-water column. Sediment N was enriched with 15N to quantitatively determine the movement of NH4-N from the sediment to the overlying water column. During the first 30 days. 48% of the total N uptake by water hyacinth was derived from sediment 15NH4-N. This had decreased to 14% after 183 days. Mass balance of N indicates that about 25% sediment NH4-N was released into the overlying water, but only 17% was assimilated by water hyacinth. NH4-N levels in the water column were very low, with very little or no concentration gradients. NH4-N levels in the interstitial water of the sediment were in the range of 30–35 mg L–1 for the lower depths (> 35 cm), while in the surface 5 cm of depth NH4-N levels decreased to 3.2 mg L–1. Simulated results also showed similar trends for the interstitial NH4-N concentration of the sediment. The overall estimated NH4-N flux from the sediment to the overlying water was 4.8 µg cm–2 day–1, and the soluble organic N flux was 5.8 µg N cm–2 day–1. Total N flux was 10.6 µg N cm–2 day–1.  相似文献   

13.
Summary Tracer studies were made on balance and chemical distribution of added fertilizer under field conditions using a modified type of lysimeter at different moisture regimes. A modified chemical method was also used for the determination of different forms of organic N.An average of 25 per cent of the isotope enriched nitrogen applied to soil could not be accounted for at the end of the 3 years of experiment. The amount of residual added N in soil was around 33 per cent of which 27 per cent was in 0–20 cm layers and only 6 per cent was found in 20–50 cm layers. The average crop recoveries were around 43 per cent. Only 0.18 per cent of NO3–N was leached from the irrigated plots.The alkali-stable N (amino acid-N) fraction was higher for irrigated (19 per cent) than nonirrigated plots (15 per cent). There were no difference in the amounts of fixed NH4, non-hydrolyzed and alkali-labile N fractions for irrigated and non-irrigated plots. Only an average of 1.5 per cent of total fertilizer N was found as fixed NH4–N form but the total fixed NH4–N was higher (10–13 per cent) than that reported by other workers for surface soil layers. The sum of different soil-nitrogen fractions were always higher than the total nitrogen in soil.  相似文献   

14.
The capacity of a lake to remove reactive nitrogen (N) through denitrification has important implications both for the lake and for downstream ecosystems. In large oligotropic lakes such as Lake Superior, where nitrate (NO3 ?) concentrations have increased steadily over the past century, deep oxygen penetration into sediments may limit the denitrification rates. We tested the hypothesis that the position of the redox gradient in lake sediments affects denitrification by measuring net N-fluxes across the sediment–water interface for intact sediment cores collected across a range of sediment oxycline values from nearshore and offshore sites in Lake Superior, as well as sites in Lake Huron and Lake Erie. Across this redox gradient, as the thickness of the oxygenated sediment layer increased from Lake Erie to Lake Superior, fluxes of NH4 + and N2 out of the sediment decreased, and sediments shifted from a net sink to a net source of NO3 ?. Denitrification of NO3 ? from overlying water decreased with thickness of the oxygenated sediment layer. Our results indicate that, unlike sediments from Lake Erie and Lake Huron, Lake Superior sediments do not remove significant amounts of water column NO3 ? through denitrification, likely as a result of the thick oxygenated sediment layer.  相似文献   

15.
Intensity of mineralization processes in mountain lakes in NW Slovenia   总被引:2,自引:0,他引:2  
The potential and actual intensity of mineralization in sediments of fourteen mountain lakes and one subalpine lake in NW Slovenia have been measured. Potential mineralization was measured as the intensity of the electron transport system (ETS) activity of microzoobenthos and microbial communities and the actual mineralization as the oxygen consumption of respiration processes, both measured at a standard temperature of 20°C. The lakes are of different trophic levels and some exhibit seasonal anoxia. All but one are hardwater lakes. Two layers of sediment cores from the deepest point of the lakes were analysed: a surface layer and one below 15 cm. Significant differences among different lakes in their ETS activity and oxygen consumption in the surface and lower layers of sediment were observed. ETS activities and oxygen consumption rates were higher in the surface layers of all the lakes. From the three investigated deterministic factors (temperature, lake depth and total phosphorus in the water column) on sedimentary metabolism ETS activity in the surface layer correlated significantly with total phosphorus and lake depth, but oxygen consumption rate showed a significant correlation only with total phosphorus. The relationship between oxygen consumption and ETS activity was also investigated. ETS activities correlated with oxygen consumption rates according to the equation of logR = 0.421* logETS + 0.898 (r=0.82; n=30; p<0.001). The R/ETS ratio was lower at the sediment surface than in the layers deeper than 15 cm. It is concluded that ETS activity and oxygen consumption are good indicators of the intensity of the metabolic activity and mineralization in lake sediments. As the characteristics of lakes and some environmental factors influence the ETS activity and the oxygen consumption differently, the same R/ETS ratio should not be used as conversion factor in calculations for different lakes.  相似文献   

16.
Vertical distribution of organic constituents, i.e. total organic carbon (TOC), extractable organic carbon with ethyl acetate (EOC), hydrocarbons, phytol, sterols, fatty acids and phenolic acids in Lake Vanda was studied to elucidate their features in relation to the stratification of lake water and the distribution of lake organisms. The concentrations of TOC, EOC and sterols increased with depth and attained the maximum values of 25 and 1.5 mgC l–1 and 1.4 g l–1 in the bottom, respectively, while those of fatty acids showed the maximum value of 61 g l–1 at a depth of 55.4 m, along with the highest value of the ratio of unsaturated (UC16, uC18) to saturated (C16, C18) acids (8.5) and with the highest carbon preference index (35). Hydrocarbons were only found in the bottom layers (60.4 and 65.9 m) and bottom sediment. These results suggest strongly that the vertical distribution of lake organisms and their activity are quite different due to depth. In the bottom warm anoxic layers the degradation of organic materials must have occurred significantly and thus refractory organic materials should be concentrated.  相似文献   

17.
The vertical distribution of the tubificid worm Rhyacodrilus hiemalis Ohtaka, the numerically dominant species of oligochaete in the littoral of Lake Biwa, was studied with special reference to seasonal vertical migration in the lake sediment. Monthly collections of lake sediment cores were made using PVC tubes. Core sections of sample sediments ranged from 76 to 117 cm. The vertical distribution of the worms showed no diurnal variation; therefore diel vertical migration was not evident. Seasonal downward migration started in April, and upward migration started in October. From December to March, almost all worms remained in the near-surface sediment layer (surface to 30 cm deep), while from July to September almost all worms remained deeper than 30 cm. However, few individuals migrated deeper than 90 cm. No discontinuous layers were found in grain size composition, water content, loss on ignition, particulate carbon, nitrogen or phosphorus. In deep sediment there was no free oxygen, as evidenced by negative ORP values. For 4 months in summer, R. hiemalis aestivated, probably utilizing anaerobic respiration. It appeared that R. hiemalis moved deeper in the sediment in response to sediment temperature, because sediment temperatures in the deep layers seemed to converge at around 20–21 °C in the summer months. The life history traits of seasonal vertical migration and summer aestivation perhaps arose as an adaptation to the climatic conditions accompanying the geographical origin of R. hiemalis, and they also serve to minimize predation risk during summer when most invertebrate predatory fishes are active.  相似文献   

18.
Different phosphorus fractions and metal element composition of surficial sediments were measured on three occasions in 2005 and 2006 along a transect between Nyanza Gulf and offshore Lake Victoria, in order to assess the potential for sediments to contribute to the water column P concentrations in Lake Victoria. Total phosphorus (TP), apatite phosphorus (AP), inorganic phosphorus (IP) and organic phosphorus (OP) increased in sediments along the gulf towards the main lake while the non-apatite inorganic phosphorus (NAIP) increases were less defined. The longitudinal gradient of sediment TP and its fractions in Nyanza Gulf is a result of high rates of terrigenous input and resuspension and transport of the light, phosphorus rich inorganic and organic matter towards the main lake. TP in the sediment ranged from 812.7 to 1,738 mg/kg dry weight (DW) and was highest in the Rusinga Channel, the exchange zone between the gulf and the main lake. AP was the most important TP fraction, contributing between 35 and 57.3% of TP. Ca content in the sediment was strongly associated with TP and AP in the sediment (r2 = 0.92 and 0.98, respectively) in the gulf and the channel, indicating the importance of apatite in controlling P availability in these zones. In the gulf and the Rusinga Channel, the less bioavailable apatite phosphorus dominated, whereas in the deeper main lake OP was the major fraction illustrating the importance of anaerobic release of P from sediments and acceleration of internal P loading in the main lake.  相似文献   

19.
In 1859, the level of Lake Höytiäinen was lowered accidentally by 9.5 m and 157 km2 new land was formed. The event is marked by a 2–3 cm inwash horizon of clay and fine silt in deep-water sediments. In the sediment profile, the dry weights of 2 cm thick subsamples increase from 51 mg g–1 in the clay horizon and decrease back to 117–127 mg g–1 below the clay horizon. Below the pale clay horizon the sediment is muddy and rich in organic substances.Loss on ignition, amount of Tot.P, Tot.N and BOD7 are the highest below the clay horizon. The clay horizon has prevented mixing of the old sediment as well as aerobic decomposition of organic compounds. The high loss on ignition and the large proportion of biologically degradable organic substances in the old sediment resembles the new upper sediment of a typical central Finnish lake.The finding of a 133 year old well preserved top sediment sows that before the impact of waste waters and fertilizers, the upper sediment of the lake was rich in organic substances and nutrients. In spite of cultivation of new land later on, the new top sediment above the clay horizon is not as rich in organic substances and nutrients as the old one below it. This suggests that part of the organic substances may be mobile within the sediment and move to the uppermost sediment layer in the course of time in undisturbed lake sediments.  相似文献   

20.
To understand the effect of submerged macrophytes on P in sediment, P fractions in the surface sediments (0–20 cm) of Potamogeton crispus, Potamogeton maackianus and non-vegetated areas were investigated. In the submerged macrophytes areas, the concentrations of HCl-P, NaOH-P, IP, OP and BD-P were significantly lower than in the non-vegetated area. NH4Cl-P did not differ significantly among areas.

In the submerged macrophyte distribution areas, TP was significantly correlated with IP and OP. However, in the non-vegetated area, TP was significantly correlated with NH4Cl-P and OP. In all of the areas sampled, IP was the major phosphorus fraction in the sediments, which consists largely of NAOH-P and HCl-P. The decreasing order of P fractions was: IP > HCl-P > NaOH-P > OP > BD-P > NH4Cl-P. These results show that submerged macrophytes can decrease the concentrations of all P fractions and imply that submerged macrophytes play a key role in the retention of P nutrients.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号