首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and structure of proteoglycan core protein   总被引:2,自引:0,他引:2  
Studies of the structure and synthesis of cartilage proteoglycan core protein have been carried out. Deglycosylation of completed, secreted proteoglycan by HF-pyridine treatment yielded an intact homogeneous core protein of approximately 210,000 daltons, with a blocked amino-terminus. Greater than 95% of chondroitin sulfate chains and 80% of N- and O-linked oligosaccharides were removed by the procedure, which made the product an excellent xylosyltransferase acceptor. Little alteration of core protein structure occurred during the HF-pyridine treatment as shown by complete immunoreactivity with antiserums prepared against hyaluronidase-digested proteoglycan. In other studies, the initially synthesized precursor for proteoglycan core protein was found to be approximately 376,000 daltons and localized to the rough membrane fractions. This precursor already contained N-linked oligosaccharides, and was also able to accept xylose, thereby initiating chondroitin sulfate chains. The precursor was translocated intact in an energy-dependent manner to smooth membrane-Golgi fractions where further processing of high mannose type of oligosaccharides and addition of glycosaminoglycan chains occurred. The subcellular distribution pattern of the chondroitin sulfate-synthesizing enzymes corroborated the proposed topological modifications of the proteoglycan core protein precursor.  相似文献   

2.
Pulse-labelling of mouse mastocytoma cell cultures, established from ascites fluid, with inorganic [35S]sulphate for 1 h yielded labelled heparin proteoglycan containing polysaccharide chains of Mr 60,000-100,000. After chase incubation for 24 h most of the 35S appeared in intracellular polysaccharide fragments similar in size to commercially available heparin, Mr 5000-25,000, as indicated by gel chromatography. Products isolated from cultures after 6 h of chase incubation consisted of partially degraded free polysaccharide chains and, in addition, residual proteoglycans that were of smaller size than the proteoglycans initially pulse-labelled. The polysaccharide chains released by alkali treatment from the residual chase-incubated proteoglycans were of the same size as the chains derived from proteoglycans after 1 h of pulse labelling. These results suggest that the intracellular degradation of heparin proteoglycan to polysaccharide fragments is initiated by release of intact polysaccharide chains, probably by action of a peptidase, and is pursued through cleavage of these chains by an endoglycosidase. An endoglucuronidase with stringent substrate specificity [Thunberg, Bäckström, Wasteson, Ogren & Lindahl (1982) J. Biol. Chem. 257, 10278-10282] has previously been implicated in the latter step. Cultures of more purified mastocytoma cells (essentially devoid of macrophages) did not metabolize [35S]heparin proteoglycan to polysaccharide fragments, but instead accumulated free intact polysaccharide chains, i.e. the postulated intermediate of the complete degradation pathway. When such purified cells were co-cultured with adherent mouse peritoneal cells, presumably macrophages, formation of polysaccharide fragments was observed. It is tentatively proposed that the expression of endoglucuronidase activity by the mast cells depends on collaboration between these cells and macrophages.  相似文献   

3.
4.
A genomic DNA fragment (gCORE-1), encoding a portion of the cartilage proteoglycan core protein, has been isolated from a phage library using cDNA as a probe. The genomic insert is about 17 kilobase pairs; two BamHI fragments of the insert (1.3 and 4.8 kilobase pairs) contain most of the hybridizable sequences found in the cDNA. Sequence analysis of these fragments shows that they contain a total of five exons that encompass 216 amino acid residues, all of which are identical to those of the corresponding cDNA sequence. Three of the exons, which are adjacent to one another, are very similar to the corresponding exons in the gene of a rat hepatic lectin as well as to an exon in the gene of human pulmonary surfactant-associated protein. There is a strong degree of conservation of amino acid sequences encoded in the three genes, although there is no similarity between their introns. The sizes of the five exons in gCORE-1, except for one (which is indeterminate because only a partial cDNA sequence is available), are less than 184 base pairs, whereas the sizes of the introns range from 218 to greater than 2629 base pairs. Four of the introns interrupt an exon codon at either their donor or acceptor sites, between the first and second nucleotides. Only one intron does not split a codon. Intron and exon boundary sites are in agreement with known consensus sequences for introns. The dispersed distribution and relatively small size of the exons, if representative of the entire gene, suggest that the complete gene which codes for the core protein may be quite sizable.  相似文献   

5.
Core protein from bovine nasal proteoglycan has been obtained by cyanogen bromide cleavage and by removal of most of the glycosaminoglycan side chains by hydrogen fluoride treatment. Amino acid analysis of the cyanogen bromide fragment shows it to consist mainly of proline, serine, glycine and glutamic acid (glutamine). End-group analyses of the fragment and HF stripped core reveal and N-terminal residue to be valine in each case. The stripped core has been subjected to sequencing and some sequential information is presented. Based upon the amino acid analysis, sequence information and other properties, conformation analysis indicates that the most likely conformation is that of a flexible extended chain containing β-turns. The existence of a common N-terminal residue indicates that it is the C-terminal region which lies in the region of the hyaluronic acid backbone in intact proteoglycan. Furthermore, enzymatic cleavage of core protein which occurs in proteoglycan turnover, aging and degenerative diseases, probably does not occur by a stepwise cleavage from the N terminus of proteoglycan but by a more drastic degradation process.  相似文献   

6.
Large aggregating chondroitin sulfate proteoglycan (CSPG/aggrecan) is one of the major extracellular matrix components in cartilage. The core protein is also large, over 200 kDa, and modular with a distinct correspondence between protein structural domains and the encoding exons. Here we report the isolation, using chick CSPG cDNA probes and the ensuing sequencing, of genomic clones containing exons encoding the chick CSPG core protein. The 5 two globular domains, G1 and G2, are encoded by four and three exons, respectively, and the interglobular domain is encoded by a single exon. The chondroitin sulfate attachment domain is encoded by the largest exon, 3,216 bp, which is approximately 50% of the total coding sequence. Combined with the previous report (Tanaka, T., Har-el, R. Tanzer, M.L. 1988 J. Biol. Chem. 263, 15831–15835), these data reveal that the chick CSPG gene contains at least 18 exons spanning a genome which is greater than 30 kb. No evidence was obtained for multiple genes for aggrecan in the chick genome. Elucidation of the chick genomic structure allows comparison of the avian and mammalian link protein genes to the homologous portions of avian and mammalian core protein genes (hyaluronate binding domain) with respect to their origins and paths of duplication and divergence. Correspondence to: N.B. Schwartz  相似文献   

7.
8.
9.
Expression of the hematopoietic proteoglycan core protein (HpPG) gene was examined in normal peripheral blood, normal bone marrow, and leukemic peripheral blood leukocytes samples to assess the expression pattern of the HpPG gene in these cells and to ascertain points of regulation of this gene during hematopoiesis. In situ hybridization to normal bone marrow and peripheral blood leukocytes demonstrated that the gene was expressed in the promyelocytes at a approximately two fold greater level than in the segmented neutrophils and the expression decreased as the granulocytes matured. The ratio of expression in the other leukocytes to expression in the segmented neutrophils were as follows: eosinophils/basophils approximately 7; monocytes approximately 2; lymphocytes less than 1. Expression of the HpPG gene during myeloblast differentiation was assessed by Northern blot analysis of acute myelogenous leukemia (AML) RNA samples. The expression of this gene, when compared to the levels in HL-60 cells, was approximately ten fold lower in the poorly differentiated blast cells obtained from three AML patients classified M"0". Conversely, the expression in the more differentiated blast cells obtained from 10 of 11 AML patients classified as M1 and M2 were at levels similar to the levels in HL-60 cells. The expression level found in eight lymphoid leukemias was approximately ten fold or more lower than in HL-60 cells. Gene copy number determination confirmed that the HpPG gene is present in one copy per haploid genome. Thus the HpPG gene's expression pattern denotes a single copy gene being differentially expressed during hematopoiesis with initial regulation occurring very early in this developmental process and an additional up-regulatory event occurring during granule genesis.  相似文献   

10.
We have identified a protein(s) on the surface of hepatocytes that binds to the core protein of the heparan sulfate proteoglycan of basement membranes. These cells attached and spread on substrates prepared from the basement membrane heparan sulfate proteoglycan (HSPG) and its core protein (HSPG-core). Three proteins (Mr = 38,000, 36,000, and 26,000) were found to bind to a HSPG-core affinity column using extracts of iodinated hepatocytes, whereas proteins extracted from isolated membranes contained primarily the larger protein (Mr = 38,000). Similar results were obtained using a solid phase binding technique using labeled HSPG-core. Binding of HSPG-core to the protein (Mr = 38,000) was not altered by the presence of an excess of heparin, heparan sulfate, fibronectin, laminin, or collagen IV but was reduced by unlabeled HSPG-core. Similar studies showed that the binding protein (Mr = 3,0000) was present in extracts from the membranes of Engelbreth-Holm-Swarm tumor cells, Madin-Darby canine kidney cells, COS cells, melanoma cells, and rat kidney epithelial cells but not in fibroblasts. The protein was found in increased amounts in 3T3 cells treated with retinoic acid. These observations suggest that a variety of cells that contact basement membrane contain the proteoglycan-binding protein.  相似文献   

11.
Chicken embryos homozygous for the autosomal recessive gene nanomelia exhibit cartilage defects, synthesize low levels of cartilage chondroitin sulfate proteoglycan (CSPG), and are missing the CSPG core protein (Argraves, W. S., McKeown-Longo, P. J., and Goetinck, P. F. (1981) FEBS Lett. 131, 265). In our studies of nanomelic chondrocytes in culture, we detected neither sulfate-labeled CSPG nor its Mr 370,000 core protein. However, in immunoprecipitation reactions using both polyclonal and monoclonal antibodies directed against the cartilage CSPG core protein, we identified a protein of Mr 300,000 that contains an epitope found in the hyaluronic acid-binding region of the normal core protein. This protein was also detected among products synthesized by chondrocytes obtained from phenotypically normal embryos resulting from matings between parents heterozygous for nanomelia. Sensitivity to endoglycosidase H indicated that the product is a glycoprotein with attached mannose-rich oligosaccharides. Pulse-chase studies revealed the disappearance of the glycoprotein after 6 h of chase, but no detectable formation of proteoglycan. Our results suggest that although nanomelic chondrocytes are deficient in the production of normal CSPG and its core protein, they do synthesize a smaller, immunologically related glycoprotein that does not undergo the post-translational processing characteristic of the normal cartilage core protein.  相似文献   

12.
Proteoglycans have been isolated from a high speed supernatant fraction of a mouse mastocytoma by procedures which should minimize alteration of the native protein-polysaccharide molecule. The methods used include in vivo labeling proteoglycans with 35S-sulfate, 3H-leucine and 3H-lysine, centrifugation of the tumor homogenate at 105,000 g, cetylpyridinium fractionation of the supernatant, and further purification of some of the fractions obtained by DEAE-cellulose column chromatography, gel filtration on Sepharose 4B and cellulose acetate electrophoresis. Two major sulfated proteoglycans were obtained, one containing keratan sulfate-like material (KSP-S), the other a heparin-like polymer (HP-S). The presence in HP-S of a compound similar to heparin was confirmed by its digestibility with flavobacterium heparinase. HP-S contained about 4 per cent protein. Glycine was the predominant amino acid, and serine did not appear to be involved in the peptide-carbohydrate linkage. The proteoglycan present in HP-S appeared to be homogeneous when examined using cellulose acetate electrophoresis. KSP-S was found to contain sialic acid and its protein content was significantly higher than that of HP-S. Glutamic and aspartic acids were the most abundant amino acids in KSP-S.  相似文献   

13.
The properties of type I and type II protein kinases in PY815 mouse mastocytoma cells were shown to change following growth inhibition by prostaglandin E1 and 3-isobutyl-1-methylxanthine. These changes included a large reduction in type I protein kinase consistent with a role for this isoenzyme as a positive effector of growth, a decrease in free cyclic AMP binding protein and an increase in type II protein kinase. Some properties of the fully activated isoenzymes are presented that may be important in determining their activity in vivo.  相似文献   

14.
15.
Changes in the steady-state cytoplasmic levels of mRNA for the core protein of the major sulfated proteoglycan of cartilage were examined during the course of limb chondrogenesis in vitro using cloned cDNA probes. Cytoplasmic core protein mRNA begins to accumulate at the onset of overt chondrogenesis in micromass culture coincident with the crucial condensation phase of the process, in which prechondrogenic mesenchymal cells become closely juxtaposed prior to depositing a cartilage matrix. The initiation of core protein mRNA accumulation coincides with a dramatic increase in the accumulation of mRNA for type II collagen, the other major constituent of hyaline cartilage matrix. Following condensation, there is a concomitant progressive increase in cytoplasmic core protein and type II collagen mRNA accumulation which parallels the progressive accumulation of cartilage matrix by the cells. The relative rate of accumulation of cytoplasmic type II collagen mRNA is greater than twice that of core protein mRNA during chondrogenesis in micromass culture. Cyclic AMP, an agent implicated in the regulation of chondrogenesis elicits a concomitant two- to fourfold increase in both cartilage core protein and type II collagen mRNA levels by limb mesenchymal cells. Core protein gene expression is more sensitive to cAMP than type II collagen gene expression. These results suggest that the cartilage proteoglycan core protein and type II collagen genes are coordinately regulated during the course of limb cartilage differentiation, although there are quantitative differences in the extent of expression of the two genes.  相似文献   

16.
The yolk sac carcinoma cell line L2 secretes a chondroitin/dermatan sulfate proteoglycan that has an Mr 10,000 core protein and carries an average of 14 glycosaminoglycan chains. The amino acid sequence of the mature core protein has been determined from cloned cDNA (Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1321-1325). From additional cDNA sequences described in this report we have identified the prepro core protein precursor of the yolk sac carcinoma chondroitin/dermatan sulfate proteoglycan. From the amino acid sequence of the core protein precursor can be deduced the protein processing events in the biosynthesis of the proteoglycan. The amino acid sequence shows that the 104-amino acid mature core protein is processed from a 179-amino acid prepro core protein precursor which, in addition to the mature core protein, contains a 26-amino acid signal peptide as well as a 49-amino acid propeptide. The molecular weight of the prepro core protein predicted from the cDNA sequence (Mr = 18,600) was in good agreement with the molecular weight of the in vitro translation product (Mr = 19,000) of hybrid-selected mRNA. Accordingly, we have designated the proteoglycan core protein PG19. Further analysis of the PG19 mRNA by RNA sequencing confirmed the identification of the core protein translation initiation codon by revealing stop codons in all three reading frames of the upstream mRNA sequence. Primer extension analyses demonstrated that the 5' untranslated sequence of the proteoglycan mRNA is approximately 220 nucleotides in length, which, combined with the length of cDNA clones, accounts for the entire length of the coding sequence of PG19 mRNA from L2 cells. The cDNA sequences presented here establish the complete protein sequence of PG19 and provide evidence of polypeptide processing during the biosynthesis of the proteoglycan core protein.  相似文献   

17.
A male patient, 4 years 9 mo old and having progeroidal appearance, exhibited delayed mental development and multiple abnormalities of connective tissues including growth failure, osteopenia of all and dysplasia of some bones, defective deciduous teeth, loose but elastic skin, delayed wound healing with formation of thin atrophic scars, scanty scalp hair, hypotonic muscles, and hypermobile joints. Skin fibroblasts of the patient converted only about half of the core protein of the small proteodermatan sulfate to a mature glycosaminoglycan chain-bearing proteoglycan. The remaining core protein, which contained complex-type asparagine-bound oligosaccharides, was secreted with almost normal kinetics. Xylosyltransferase activity and the synthesis of other proteoglycan types were normal. Normal induction of glycosaminoglycan synthesis occurred in the presence of 1 mM, but there was very little induction in the presence of 0.01 mM p-nitrophenyl-beta-xyloside. An antibody against an N-terminal pentadecapeptide of the core protein recognized the glycosaminoglycan-free core protein from the patient less well than the chain-bearing protein treated with chondroitin ABC lyase. Though these results do not define the basic defect unambiguously, they provide the first report of a disorder being due to an abnormality in small proteoglycan biosynthesis.  相似文献   

18.
Our previous work showed that treatment of chick embryo cartilage proteoglycan (PG-H) with chondroitinase-AC II and keratanase yielded a protein-rich core fraction having enzymatically modified linkage oligosaccharides. The core sample has now been analyzed by tryptic peptide mapping, in which the isolated core sample contained in a single Coomassie blue-staining band from a dried slab gel is radioiodinated and treated with trypsin, and the resultant tryptic peptides are displayed two-dimensionally on a silica gel thin layer plate. The map thus obtained exhibited 22 major peptide spots, the resolution and location of which were reproducible. In order to identify regions of the core polypeptide from which the tryptic peptides are derived, PG-H was cleaved with clostripain under conditions that yield a hyaluronic acid-binding fragment with an apparent Mr = 150,000 and chondroitin sulfate-peptide clusters of smaller molecular sizes. Although the peptide maps of the two size classes of clostripain fragments differed significantly from each other, the patterns of spots, as a whole, were extensively similar to those observed with the intact core molecule. These results have provided additional evidence that PG-H has a single, nonvariable core protein structure. In addition, the technique used here will provide a versatile method for the identification of genetic types in this increasingly complex family of matrix macromolecules.  相似文献   

19.
Primary sequence of the mouse ribosomal protein L37a.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号