首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the β-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Δ32-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10–25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through β-oxidation was more severely reduced in mutants devoid of Δ32-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Δ32-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.  相似文献   

2.
3.
Allenbach L  Poirier Y 《Plant physiology》2000,124(3):1159-1168
Degradation of fatty acids having cis-double bonds on even-numbered carbons requires the presence of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. Two alternative pathways have been described to degrade these fatty acids. One pathway involves the participation of the enzymes 2, 4-dienoyl-coenzyme A (CoA) reductase and Delta(3)-Delta(2)-enoyl-CoA isomerase, whereas the second involves the epimerization of R-3-hydroxyacyl-CoA via a 3-hydroxyacyl-CoA epimerase or the action of two stereo-specific enoyl-CoA hydratases. Although degradation of these fatty acids in bacteria and mammalian peroxisomes was shown to involve mainly the reductase-isomerase pathway, previous analysis of the relative activity of the enoyl-CoA hydratase II (also called R-3-hydroxyacyl-CoA hydro-lyase) and 2,4-dienoyl-CoA reductase in plants indicated that degradation occurred mainly through the epimerase pathway. We have examined the implication of both pathways in transgenic Arabidopsis expressing the polyhydroxyalkanoate synthase from Pseudomonas aeruginosa in peroxisomes and producing polyhydroxyalkanoate from the 3-hydroxyacyl-CoA intermediates of the beta-oxidation cycle. Analysis of the polyhydroxyalkanoate synthesized in plants grown in media containing cis-10-heptadecenoic or cis-10-pentadecenoic acids revealed a significant contribution of both the reductase-isomerase and epimerase pathways to the degradation of these fatty acids.  相似文献   

4.
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.  相似文献   

5.
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.  相似文献   

6.
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.  相似文献   

7.
1. Pent-4-enoyl-CoA and its metabolites penta-2,4-dienoyl-CoA and acryloyl-CoA, as well as n-pentanoyl-CoA, cyclopropanecarbonyl-CoA and cyclobutanecarbonyl-CoA, were examined as substrates or inhibitors of purified enzymes of beta-oxidation in an investigation to locate the site of inhibition of fatty acid oxidation by pent-4-enoate. 2. The reactions of various acyl-CoA derivatives with l-carnitine and of various acyl-l-carnitine derivatives with CoA, catalysed by carnitine acetyltransferase, were investigated and V(max.) and K(m) values were determined. Pent-4-enoyl-CoA and n-pentanoyl-CoA were good substrates, whereas cyclobutanecarbonyl-CoA, cyclopropanecarbonyl-CoA and acryloyl-CoA reacted more slowly. A very slow rate with penta-2,4-dienoyl-CoA was detected. Pent-4-enoyl-l-carnitine, n-pentanoyl-l-carnitine and cyclobutanecarbonyl-l-carnitine were good substrates and cyclopropanecarbonyl-l-carnitine reacted more slowly. 3. Pent-4-enoyl-CoA and n-pentanoyl-CoA were substrates for butyryl-CoA dehydrogenase and for octanoyl-CoA dehydrogenase, and both compounds were equally effective competitive inhibitors of these enzymes with butyryl-CoA or palmitoyl-CoA respectively as substrates. V(max.), K(m) and K(i) values were determined. 4. None of the acyl-CoA derivatives inhibited enoyl-CoA hydratase or 3-hydroxybutyryl-CoA dehydrogenase. Penta-2,4-dienoyl-CoA was a substrate for enoyl-CoA hydratase when the reaction was coupled to that catalysed by 3-hydroxybutyryl-CoA dehydrogenase. 5. In a reconstituted sequence with purified enzymes crotonoyl-CoA was largely converted into acetyl-CoA, and pent-2-enoyl-CoA into acetyl-CoA and propionyl-CoA. Penta-2,4-dienoyl-CoA was slowly converted into acetyl-CoA and acryloyl-CoA. 6. Penta-2,4-dienoyl-CoA, a unique metabolite of pent-4-enoate, was the only compound that specifically inhibited an enzyme of the beta-oxidation sequence, 3-oxoacyl-CoA thiolase. The formation of penta-2,4-dienoyl-CoA could explain the strong inhibition of fatty acid oxidation in intact mitochondria by pent-4-enoate.  相似文献   

8.
The mitochondrial metabolism of unsaturated fatty acids with conjugated double bonds at odd-numbered positions, e.g. 9-cis, 11-trans-octadecadienoic acid, was investigated. These fatty acids are substrates of beta-oxidation in isolated rat liver mitochondria and hence are expected to yield 5,7-dienoyl-CoA intermediates. 5, 7-Decadienoyl-CoA was used to study the degradation of these intermediates. After introduction of a 2-trans-double bond by acyl-CoA dehydrogenase or acyl-CoA oxidase, the resultant 2,5, 7-decatrienoyl-CoA can either continue its pass through the beta-oxidation cycle or be converted by Delta3,Delta2-enoyl-CoA isomerase to 3,5,7-decatrienoyl-CoA. The latter compound was isomerized by a novel enzyme, named Delta3,5,7,Delta2,4, 6-trienoyl-CoA isomerase, to 2,4,6-decatrienoyl-CoA, which is a substrate of 2,4-dienoyl-CoA reductase (Wang, H.-Y. and Schulz, H. (1989) Biochem. J. 264, 47-52) and hence can be completely degraded via beta-oxidation. Delta3,5,7,Delta2,4,6-Trienoyl-CoA isomerase was purified from pig heart to apparent homogeneity and found to be a component enzyme of Delta3,5,Delta2,4-dienoyl-CoA isomerase. Although the direct beta-oxidation of 2,5,7-decatrienoyl-CoA seems to be the major pathway, the degradation via 2,4,6-trienoyl-CoA makes a significant contribution to the total beta-oxidation of this intermediate.  相似文献   

9.
2,4-Dienoyl-CoA reductase is an enzyme that is required for the beta-oxidation of unsaturated fatty acids with even-numbered double bonds. The 2,4-dienoyl-CoA reductase from Escherichia coli was studied to explore the catalytic and structural properties that distinguish this enzyme from the corresponding eukaryotic reductases. The E. coli reductase was found to contain 1 mol of flavin mononucleotide and 4 mol each of acid-labile iron and sulfur in addition to 1 mol of flavin adenine dinucleotide per mole of protein. Redox titrations revealed a requirement for 5 mol of electrons to completely reduce 1 mol of enzyme and provided evidence for the formation of a red semiquinone intermediate. The reductase caused a significant polarization of the substrate carbonyl group as indicated by an enzyme-induced red shift of 38 nm in the spectrum of 5-phenyl-2,4-pentadienoyl-CoA. However, suspected cis --> trans isomerase and Delta(3),Delta(2)-enoyl-CoA isomerase activities were not detected in this enzyme. It is concluded that the 2, 4-dienoyl-CoA reductases from E. coli and eukaryotic organisms are structurally and mechanistically unrelated enzymes that catalyze the same type of reaction with similar efficiencies.  相似文献   

10.
The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.  相似文献   

11.
The mitochondrial beta-oxidation of octa-2,4,6-trienoic acid was studied with the aim of elucidating the degradation of unsaturated fatty acids with conjugated double bonds. Octa-2,4,6-trienoic acid was found to be a respiratory substrate of coupled rat liver mitochondria, but not of rat heart mitochondria. Octa-2,4,6-trienoyl-CoA, the product of the inner-mitochondrial activation of the acid, was chemically synthesized and its degradation by purified enzymes of beta-oxidation was studied spectrophotometrically and by use of h.p.l.c. This compound is a substrate of NADPH-dependent 2,4-dienoyl-CoA reductase or 4-enoyl-CoA reductase (EC 1.3.1.34), which facilitates its further beta-oxidation. The product obtained after the NADPH-dependent reduction of octa-2,4,6-trienoyl-CoA and one round of beta-oxidation was hex-4-enoyl-CoA, which can be completely degraded via beta-oxidation. It is concluded that polyunsaturated fatty acids with two conjugated double bonds extending from even-numbered carbon atoms can be completely degraded via beta-oxidation because their presumed 2,4,6-trienoyl-CoA intermediates are substrates of 2,4-dienoyl-CoA reductase.  相似文献   

12.
Fatty acids with double bonds at odd-numbered positions such as oleic acid can enter beta-oxidation via a pathway relying solely on the auxiliary enzyme Delta(3)-Delta(2)-enoyl-CoA isomerase, termed the isomerase-dependent pathway. Two novel alternative pathways have recently been postulated to exist in mammals, and these additionally depend on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase (di-isomerase-dependent) or on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase and 2,4-dienoyl-CoA reductase (reductase-dependent). We report the identification of the Saccharomyces cerevisiae oleic acid-inducible DCI1 (YOR180c) gene encoding peroxisomal di-isomerase. Enzyme assays conducted on soluble extracts derived from yeast cells overproducing Dci1p using 3,5,8,11,14-eicosapentenoyl-CoA as substrate demonstrated a specific di-isomerase activity of 6 nmol x min(-1) per mg of protein. Similarly enriched extracts from eci1Delta cells lacking peroxisomal 3,2-isomerase additionally contained an intrinsic 3,2-isomerase activity that could generate 3, 5,8,11,14-eicosapentenoyl-CoA from 2,5,8,11,14-eicosapentenoyl-CoA but not metabolize trans-3-hexenoyl-CoA. Amplification of this intrinsic activity replaced Eci1p since it restored growth of the eci1Delta strain on petroselinic acid for which di-isomerase is not required whereas Eci1p is. Heterologous expression in yeast of rat di-isomerase resulted in a peroxisomal protein that was enzymatically active but did not re-establish growth of the eci1Delta mutant on oleic acid. A strain devoid of Dci1p grew on oleic acid to wild-type levels, whereas one lacking both Eci1p and Dci1p grew as poorly as the eci1Delta mutant. Hence, we reasoned that yeast di-isomerase does not additionally represent a physiological 3,2-isomerase and that Dci1p and the postulated alternative pathways in which it is entrained are dispensable for degrading oleic acid.  相似文献   

13.
For the purpose of assessing in vivo the importance of 2,4-dienoyl-CoA reductase (EC 1.3.1.34) in the beta-oxidation of unsaturated fatty acids, reductase mutants of Escherichia coli were isolated by selecting cells that were able to grow on oleate but not on petroselinic acid (6-cis-octadecenoic acid). One mutant (fadH) exhibited 12% of the 2,4-dienoyl-CoA reductase activity present in the parental strain with other beta-oxidation enzymes being essentially unaffected. Antireductase antibodies were used to show that the mutant contains a fadH gene product at a level similar to that observed in the parental strain. Thus, the mutation seems to have resulted in the synthesis of a fadH gene product with lower specific activity. The mutation was mapped in the 71-75-min region of the E. coli chromosome where no other gene for beta-oxidation enzymes has so far been located. Complementation of the mutation by F'141, which carries the 67-75.5-min region of the E. coli genome, resulted in an increase in the 2,4-dienoyl-CoA reductase activity to 80% of the level found in the parental strain. Measurements of respiration with petroselinic acid as the substrate showed rates to be linearly dependent on the 2,4-dienoyl-CoA reductase activity up to levels found in wild-type E. coli. 2,4-Dienoyl-CoA reductase, like other enzymes of beta-oxidation, was induced when E. coli was grown on a long chain fatty acid as the sole carbon source. It is concluded that 2,4-dienoyl-CoA reductase is required in vivo for the beta-oxidation of unsaturated fatty acids with double bonds extending from even-numbered carbon atoms.  相似文献   

14.
The metabolism of the double bonds at the delta 3 position in fatty acids was studied in rat liver. Infusion of delta 3-trans-dodecenoic acid into isolated perfused liver and subcellular fractionation studies showed the presence of both peroxisomal and mitochondrial delta 3,delta 2-enoyl-CoA isomerase activity (EC 5.3.3.8). These findings together with the previous demonstration of peroxisomal 2,4-dienoyl-CoA reductase (EC 1.3.1.34) [(1981) J. Biol. Chem. 256, 8259-8262] and D-3-OH-acyl-CoA epimerase (EC 5.1.2.3) [(1985) FEBS Lett. 185, 129-134] activities show that peroxisomes possess all the auxiliary enzymes required for the beta-oxidation of unsaturated fatty acids.  相似文献   

15.
Fillgrove KL  Anderson VE 《Biochemistry》2000,39(23):7001-7011
The stereochemical course of reduction of dienoyl-coenzyme A (CoA) thiolesters catalyzed by the 2,4-dienoyl-CoA reductase from rat liver mitochondria was investigated. The configuration of the double bond in the 3-enoyl-CoA products was determined by (1)H NMR, and experiments to determine the stereochemical course of reduction at Calpha and Cdelta by use of 4-(2)H-labeled beta-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), were conducted in H(2)O and D(2)O. Defining the diastereoselectivity of the reaction, catalyzed by the Delta(3),Delta(2)-enoyl-CoA isomerase, facilitated the determination of the stereochemical course of reduction by 2, 4-dienoyl-CoA reductase. The absence of solvent exchange of the proton transferred during the Delta(3),Delta(2)-enoyl-CoA isomerase catalyzed equilibration of trans-2- and trans-3-enoyl-CoAs, coupled with the strong sequence homology to enoyl-CoA hydratase support the intramolecular suprafacial transfer of the pro-2R proton of trans-3-enoyl-CoA to the pro-4R position of trans-2-enoyl-CoA. The results indicate that the configuration of the double bond of the 3-enoyl-CoA product is trans and that a general acid-catalyzed addition of a solvent derived proton/deuteron occurs on the si face at Calpha of the dienoyl-CoA. The addition of the pro-4S hydrogen from NADPH occurs on the si face at Cdelta of trans-2, cis-4-dienoyl-CoA and on the re face at Cdelta of trans-2, trans-4-dienoyl-CoA. The stereochemical course of reduction of InhA, an enoyl-thiolester reductase from Mycobacterium tuberculosis, was also determined by use of ?4-(2)HNADH in D(2)O. The reduction of trans-2-octenoyl-CoA catalyzed by InhA resulted in the syn addition of (2)H(2) across the double bond yielding (2R,3S)-?2, 3-(2)H(2)?ctanoyl-CoA. In the crystal structure of the InhA ternary complex, the residue donating the proton to Calpha could not be identified ?Rozwarski, D. A., Vilcheze, C., Sugantino, M., Bittman, R., and Sacchettini, J. C. (1999) J. Biol. Chem. 274, 15582-15589. The current results place further restrictions on the source of the proton and suggest the reduction is stepwise.  相似文献   

16.
The crystal structure of Delta3-Delta2-enoyl-CoA isomerase from human mitochondria (hmEci), complexed with the substrate analogue octanoyl-CoA, has been refined at 1.3 A resolution. This enzyme takes part in the beta-oxidation of unsaturated fatty acids by converting both cis-3 and trans-3-enoyl-CoA esters (with variable length of the acyl group) to trans-2-enoyl-CoA. hmEci belongs to the hydratase/isomerase (crotonase) superfamily. Most of the enzymes belonging to this superfamily are hexamers, but hmEci is shown to be a trimer. The mode of binding of the ligand, octanoyl-CoA, shows that the omega-end of the acyl group binds in a hydrophobic tunnel formed by residues of the loop preceding helix H4 as well as by side-chains of the kinked helix H9. From the structure of the complex it can be seen that Glu136 is the only catalytic residue. The importance of Glu136 for catalysis is confirmed by mutagenesis studies. A cavity analysis shows the presence of two large, adjacent empty hydrophobic cavities near the active site, which are shaped by side-chains of helices H1, H2, H3 and H4. The structure comparison of hmEci with structures of other superfamily members, in particular of rat mitochondrial hydratase (crotonase) and yeast peroxisomal enoyl-CoA isomerase, highlights the variable mode of binding of the fatty acid moiety in this superfamily.  相似文献   

17.
Unsaturated fatty acids with odd-numbered double bonds, e.g. oleic acid, can be degraded by beta-oxidation via the isomerase-dependent pathway or the reductase-dependent pathway that differ with respect to the metabolism of the double bond. In an attempt to elucidate the metabolic functions of the two pathways and to determine their contributions to the beta-oxidation of unsaturated fatty acids, the degradation of 2-trans,5-cis-tetradecadienoyl-CoA, a metabolite of oleic acid, was studied with rat heart mitochondria. Kinetic measurements of metabolite and cofactor formation demonstrated that more than 80% of oleate beta-oxidation occurs via the classical isomerase-dependent pathway whereas the more recently discovered reductase-dependent pathway is the minor pathway. However, the reductase-dependent pathway is indispensable for the degradation of 3,5-cis-tetradecadienoyl-CoA, which is formed from 2-trans,5-cis-tetradecadienoyl-CoA by delta(3),delta(2)-enoyl-CoA isomerase, the auxiliary enzyme that is essential for the operation of the major pathway of oleate beta-oxidation. The degradation of 3,5-cis-tetradecadienoyl-CoA is limited by the capacity of 2,4-dienoyl-CoA reductase to reduce 2-trans,4-trans-tetradecadienoyl-CoA, which is rapidly formed from its 3,5 isomer by delta(3,5),delta(2,4)-dienoyl-CoA isomerase. It is concluded that both pathways are essential for the degradation of unsaturated fatty acids with odd-numbered double bonds inasmuch as the isomerase-dependent pathway facilitates the major flux through beta-oxidation and the reductase-dependent pathway prevents the accumulation of an otherwise undegradable metabolite.  相似文献   

18.
The abnormal inflorescence meristem1 (aim1) mutation affects inflorescence and floral development in Arabidopsis. After the transition to reproductive growth, the aim1 inflorescence meristem becomes disorganized, producing abnormal floral meristems and resulting in plants with severely reduced fertility. The derived amino acid sequence of AIM1 shows extensive similarity to the cucumber multifunctional protein involved in beta-oxidation of fatty acids, which possesses l-3-hydroxyacyl-CoA hydrolyase, l-3-hydroxyacyl-dehydrogenase, d-3-hydroxyacyl-CoA epimerase, and Delta(3), Delta(2)-enoyl-CoA isomerase activities. A defect in beta-oxidation has been confirmed by demonstrating the resistance of the aim1 mutant to 2,4-diphenoxybutyric acid, which is converted to the herbicide 2,4-D by the beta-oxidation pathway. In addition, the loss of AIM1 alters the fatty acid composition of the mature adult plant.  相似文献   

19.
Mitochondrial 2-enoyl-CoA reductase from bovine liver was purified and characterized. A simple three-step purification was developed, involving ion-exchange chromatography to separate the bulk of the NADPH-dependent 2,4-dienoyl-CoA reductase, followed by chromatography on Blue Sepharose and adenosine 2',5'-bisphosphate-Sepharose. Homogeneous enzyme with a subunit Mr of 35 500 is obtained in 35% yield. The Mr of the native enzyme, determined by three different methods, yielded values that suggest that the enzyme is dimeric. NADPH is required as cofactor, and cannot be replaced by NADH. The activity of the purified enzyme towards 2-trans-double bonds in 2-monoene and 2,4-diene structures was investigated. 2-Enoyl-CoA reductase reduced the double bonds in a series of 2-trans-monoenoyl-CoA esters with different chain lengths, but did not exhibit significant activity towards 2-trans-double bonds of 2,4-dienoyl-CoA esters. This result is discussed in the light of analogous observations with enoyl-CoA hydratase.  相似文献   

20.
Fat-degrading cotyledons from cucumber seedlings were investigated with respect to the enzymes metabolizing cis-unsaturated fatty acids. Isolated glyoxysomes degrade linoleic acid, the dominating fatty acid in the storage tissue of the seed. Glyoxysomes were shown to be the sole intracellular site of enzymes responsible for the degradation of unsaturated fatty acids. All three auxiliary enzyme activities discussed for the degradation of polyunsaturated fatty acids, 2,4-dienoyl-CoA reductase, enoyl-CoA isomerase, and 3-hydroxyacyl-CoA epimerase were localized within the matrix of glyoxysomes. They were not found in mitochondria. Separation of glyoxysomal matrix proteins on CM-cellulose revealed that epimerase activity was attributable to the multifunctional protein and also to another protein which apparently exhibited no other beta-oxidation activity. Furthermore, on the basis of the high epimerase activity present in glyoxysomes compared to a much lower 2,4-dienoyl-CoA reductase activity, the metabolism of unsaturated fatty acids via delta 2-cis-enoyl-CoA is considered as alternative to the reductase-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号