首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how sets of genes are coordinately regulated in space and time to generate the diversity of cell types that characterise complex metazoans is a major challenge in modern biology. The use of high-throughput approaches, such as large-scale in situ hybridisation and genome-wide expression profiling via DNA microarrays, is beginning to provide insights into the complexities of development. However, in many organisms the collection and annotation of comprehensive in situ localisation data is a difficult and time-consuming task. Here, we present a widely applicable computational approach, integrating developmental time-course microarray data with annotated in situ hybridisation studies, that facilitates the de novo prediction of tissue-specific expression for genes that have no in vivo gene expression localisation data available. Using a classification approach, trained with data from microarray and in situ hybridisation studies of gene expression during Drosophila embryonic development, we made a set of predictions on the tissue-specific expression of Drosophila genes that have not been systematically characterised by in situ hybridisation experiments. The reliability of our predictions is confirmed by literature-derived annotations in FlyBase, by overrepresentation of Gene Ontology biological process annotations, and, in a selected set, by detailed gene-specific studies from the literature. Our novel organism-independent method will be of considerable utility in enriching the annotation of gene function and expression in complex multicellular organisms.  相似文献   

2.
MOTIVATION: With the emergence of genome-wide expression profiling data sets, the guilt by association (GBA) principle has been a cornerstone for deriving gene functional interpretations in silico. Given the limited success of traditional methods for producing clusters of genes with great amounts of functional similarity, new data-mining algorithms are required to fully exploit the potential of high-throughput genomic approaches. RESULTS: Ontology-based pattern identification (OPI) is a novel data-mining algorithm that systematically identifies expression patterns that best represent existing knowledge of gene function. Instead of relying on a universal threshold of expression similarity to define functionally related groups of genes, OPI finds the optimal analysis settings that yield gene expression patterns and gene lists that best predict gene function using the principle of GBA. We applied OPI to a publicly available gene expression data set on the life cycle of the malarial parasite Plasmodium falciparum and systematically annotated genes for 320 functional categories based on current Gene Ontology annotations. An ontology-based hierarchical tree of the 320 categories provided a systems-wide biological view of this important malarial parasite.  相似文献   

3.
4.
MOTIVATION: Numerous annotations are available that functionally characterize genes and proteins with regard to molecular process, cellular localization, tissue expression, protein domain composition, protein interaction, disease association and other properties. Searching this steadily growing amount of information can lead to the discovery of new biological relationships between genes and proteins. To facilitate the searches, methods are required that measure the annotation similarity of genes and proteins. However, most current similarity methods are focused only on annotations from the Gene Ontology (GO) and do not take other annotation sources into account. RESULTS: We introduce the new method BioSim that incorporates multiple sources of annotations to quantify the functional similarity of genes and proteins. We compared the performance of our method with four other well-known methods adapted to use multiple annotation sources. We evaluated the methods by searching for known functional relationships using annotations based only on GO or on our large data warehouse BioMyn. This warehouse integrates many diverse annotation sources of human genes and proteins. We observed that the search performance improved substantially for almost all methods when multiple annotation sources were included. In particular, our method outperformed the other methods in terms of recall and average precision.  相似文献   

5.
6.
7.
An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome‐wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species.  相似文献   

8.
9.
With the arrival of low-cost, next-generation sequencing, a multitude of new plant genomes are being publicly released, providing unseen opportunities and challenges for comparative genomics studies. Here, we present PLAZA 2.5, a user-friendly online research environment to explore genomic information from different plants. This new release features updates to previous genome annotations and a substantial number of newly available plant genomes as well as various new interactive tools and visualizations. Currently, PLAZA hosts 25 organisms covering a broad taxonomic range, including 13 eudicots, five monocots, one lycopod, one moss, and five algae. The available data consist of structural and functional gene annotations, homologous gene families, multiple sequence alignments, phylogenetic trees, and colinear regions within and between species. A new Integrative Orthology Viewer, combining information from different orthology prediction methodologies, was developed to efficiently investigate complex orthology relationships. Cross-species expression analysis revealed that the integration of complementary data types extended the scope of complex orthology relationships, especially between more distantly related species. Finally, based on phylogenetic profiling, we propose a set of core gene families within the green plant lineage that will be instrumental to assess the gene space of draft or newly sequenced plant genomes during the assembly or annotation phase.  相似文献   

10.
Gene Ontology annotation quality analysis in model eukaryotes   总被引:1,自引:0,他引:1       下载免费PDF全文
Functional analysis using the Gene Ontology (GO) is crucial for array analysis, but it is often difficult for researchers to assess the amount and quality of GO annotations associated with different sets of gene products. In many cases the source of the GO annotations and the date the GO annotations were last updated is not apparent, further complicating a researchers’ ability to assess the quality of the GO data provided. Moreover, GO biocurators need to ensure that the GO quality is maintained and optimal for the functional processes that are most relevant for their research community. We report the GO Annotation Quality (GAQ) score, a quantitative measure of GO quality that includes breadth of GO annotation, the level of detail of annotation and the type of evidence used to make the annotation. As a case study, we apply the GAQ scoring method to a set of diverse eukaryotes and demonstrate how the GAQ score can be used to track changes in GO annotations over time and to assess the quality of GO annotations available for specific biological processes. The GAQ score also allows researchers to quantitatively assess the functional data available for their experimental systems (arrays or databases).  相似文献   

11.
12.
13.
14.
15.
一种新的基因注释语义相似度计算方法   总被引:1,自引:0,他引:1  
基因本体(GO)数据库为基因提供了统一的注释,有效地解决了不同数据库描述相同基因的不一致问题。但是,根据基因注释如何比较基因的功能相似性,这个问题仍然没有得到有效解决。本文提出一种新的基因注释语义相似度计算方法,这种方法在本质上是基于基因的生物学特性,其特点在于结点的语义相似度与结点所在集合无关,只与结点在GO图的位置有关,语义相似度可被重复利用。它既考虑了基因所映射的GO结点深度,又考虑了两GO结点之间所有路径对结点语义相似度的影响。文中以酵母菌的异亮氨酸降解代谢通路和谷氨酸合成代谢通路为实验,实验结果表明这种算法能准确地计算基因注释语义相似度。  相似文献   

16.
The Gene Ontology (GO) project provides a controlled vocabulary to facilitate high-quality functional gene annotation for all species. Genes in biological databases are linked to GO terms, allowing biologists to ask questions about gene function in a manner independent of species. This tutorial provides an introduction for biologists to the GO resources and covers three of the most common methods of querying GO: by individual gene, by gene function and by using a list of genes. [For the sake of brevity, the term 'gene' is used throughout this paper to refer to genes and their products (proteins and RNAs). GO annotations are always based on the characteristics of gene products, even though it may be the gene that is cited in the annotation.].  相似文献   

17.
The Gene Ontology (GO) provides biologists with a controlled terminology that describes how genes are associated with functions and how functional terms are related to one another. These term-term relationships encode how scientists conceive the organization of biological functions, and they take the form of a directed acyclic graph (DAG). Here, we propose that the network structure of gene-term annotations made using GO can be employed to establish an alternative approach for grouping functional terms that captures intrinsic functional relationships that are not evident in the hierarchical structure established in the GO DAG. Instead of relying on an externally defined organization for biological functions, our approach connects biological functions together if they are performed by the same genes, as indicated in a compendium of gene annotation data from numerous different sources. We show that grouping terms by this alternate scheme provides a new framework with which to describe and predict the functions of experimentally identified sets of genes.  相似文献   

18.
To account for the functional non-equivalence among a set of genes within a biological pathway when performing gene set analysis, we introduce GOGANPA, a network-based gene set analysis method, which up-weights genes with functions relevant to the gene set of interest. The genes are weighted according to its degree within a genome-scale functional network constructed using the functional annotations available from the gene ontology database. By benchmarking GOGANPA using a well-studied P53 data set and three breast cancer data sets, we will demonstrate the power and reproducibility of our proposed method over traditional unweighted approaches and a competing network-based approach that involves a complex integrated network. GOGANPA’s sole reliance on gene ontology further allows GOGANPA to be widely applicable to the analysis of any gene-ontology-annotated genome.  相似文献   

19.
Linkage studies of complex traits frequently yield multiple linkage regions covering hundreds of genes. Testing each candidate gene from every region is prohibitively expensive and computational methods that simplify this process would benefit genetic research. We present a new method based on commonality of functional annotation (CFA) that aids dissection of complex traits for which multiple causal genes act in a single pathway or process. CFA works by testing individual Gene Ontology (GO) terms for enrichment among candidate gene pools, performs multiple hypothesis testing adjustment using an estimate of independent tests based on correlation of GO terms, and then scores and ranks genes annotated with significantly-enriched terms based on the number of quantitative trait loci regions in which genes bearing those annotations appear. We evaluate CFA using simulated linkage data and show that CFA has good power despite being conservative. We apply CFA to published linkage studies investigating age-of-onset of Alzheimer's disease and body mass index and obtain previously known and new candidate genes. CFA provides a new tool for studies in which causal genes are expected to participate in a common pathway or process and can easily be extended to utilize annotation schemes in addition to the GO.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号