首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-pore channels (TPCs) are cation channels with a voltage-sensor domain conserved in plants and animals. Rice OsTPC1 is predominantly localized to the plasma membrane (PM), and assumed to play an important role as a Ca2+-permeable cation channel in the regulation of cytosolic Ca2+ rise and innate immune responses including hypersensitive cell death and phytoalexin biosynthesis in cultured rice cells triggered by a fungal elicitor, xylanase from Trichoderma viride. In contrast, Arabidopsis AtTPC1 is localized to the vacuolar membrane (VM). To gain further insights into the intracellular localization of OsTPC1, we stably expressed OsTPC1-GFP in tobacco BY-2 cells. Confocal imaging and membrane fractionation revealed that, unlike in rice cells, the majority of OsTPC1-GFP fusion protein was targeted to the VM in tobacco BY-2 cells. Intracellular localization and functions of the plant TPC family is discussed.  相似文献   

2.
采用遗传转化技术获得了整合有拟南芥AtELHYPRP2(EARLI1-LIKE HYBRID PROLINE-RICH PROTEIN 2,AT4G12500)基因的转基因烟草株系,研究了该基因编码蛋白对真菌病原体赤霉菌的抗性及其亚细胞定位特征。以拟南芥Col-0生态型基因组DNA为模板,通过聚合酶链反应扩增AtELHYPRP2基因编码序列,经限制性酶切后连接至pCAMBIA1302载体,构建产生pCAMBIA1302-AtELHYPRP2-GFP融合表达载体。进一步采用农杆菌LBA4404转化烟草叶片外植体,筛选得到转基因烟草植株。RT-PCR、Western blotting印迹分析结果显示,AtELHYPRP2基因在转化体中可以有效表达。激光共聚焦显微观察发现AtELHYPRP2-GFP融合蛋白产生的绿色荧光与碘化丙啶染色后产生的红色荧光能够重合,说明AtELHYPRP2蛋白定位于细胞表面。真菌侵染实验结果显示,组成性表达AtELHYPRP2基因能够增强烟草对赤霉菌的抗性,被侵染部位有明显的H2O2积累。转基因烟草植株中PR1基因的本底表达水平比野生型高,PR1和PR5基因的系统表达水平比野生型高,说明AtELHYPRP2基因可能在SAR反应中具有一定的作用。  相似文献   

3.
Members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family in plants transport a variety of substrates like nitrate, di- and tripepetides, auxin and carboxylates. We isolated two members of this family from Arabidopsis, AtPTR4 and AtPTR6, which are highly homologous to the characterized di- and tripeptide transporters AtPTR1, AtPTR2 and AtPTR5. All known substrates of members of the PTR/NRT1 family were tested using heterologous expression in Saccharomyces cerevisiae mutants and oocytes of Xenopus laevis, but none could be identified as substrate of AtPTR4 or AtPTR6. AtPTR4 and AtPTR6 show distinct expression patterns, while AtPTR4 is expressed in the vasculature of the plants, AtPTR6 is highly expressed in pollen and during senescence. Phylogenetic analyses revealed that AtPTR2, 4 and 6 belong to one clade of subgoup II, whereas AtPTR1 and 5 are found in a second clade. Like AtPTR2, AtPTR4-GFP and AtPTR6-GFP fusion proteins are localized at the tonoplast. Vacuolar localization was corroborated by co-localization of AtPTR2-YFP with the tonoplast marker protein GFP-AtTIP2;1 and AtTIP1;1-GFP. This indicates that the two clades reflect different intracellular localization at the tonoplast (AtPTR2, 4, 6) and plasma membrane (AtPTR1, 5), respectively.  相似文献   

4.
5.
Rubisco large subunit methyltransferase (PsLSMT) is a SET domain protein responsible for the trimethylation of Lys-14 in the large subunit of Rubisco. The polypeptide substrate specificity determinants for pea Rubisco large subunit methyltransferase were investigated using a fusion protein construct between the first 23 amino acids from the large subunit of Rubisco and human carbonic anhydrase II. A total of 40 conservative and non-conservative amino acid substitutions flanking the target Lys-14 methylation site (positions P(-3) to P(+3)) were engineered in the fusion protein. The catalytic efficiency (k(cat)/K(m)) of PsLSMT was determined using each of the substitutions and a polypeptide consensus recognition sequence deduced from the results. The consensus sequence, represented by X-(Gly/Ser)-(Phe/Tyr)-Lys-(Ala/Lys/Arg)-(Gly/Ser)-pi, where X is any residue, Lys is the methylation site, and pi is any aromatic or hydrophobic residue, was used to predict potential alternative substrates for PsLSMT. Four chloroplast-localized proteins were identified including gamma-tocopherol methyltransferase (gamma-TMT). In vitro methylation assays using PsLSMT and a bacterially expressed form of gamma-TMT from Perilla frutescens confirmed recognition and methylation of gamma-TMT by PsLSMT in vitro. RNA interference-mediated knockdown of the PsLSMT homologue (NtLSMT) in transgenic tobacco plants resulted in a 2-fold decrease of alpha-tocopherol, the product of gamma-TMT. The results demonstrate the efficacy of consensus sequence-driven identification of alternative substrates for PsLSMT as well as identification of functional attributes of protein methylation catalyzed by LSMT.  相似文献   

6.
Metabolic channeling has been proposed to occur at the entry point into plant phenylpropanoid biosynthesis. To determine whether isoforms of L-Phe ammonia-lyase (PAL), the first enzyme in the pathway, can associate with the next enzyme, the endomembrane-bound cinnamate 4-hydroxylase (C4H), to facilitate channeling, we generated transgenic tobacco (Nicotiana tabacum) plants independently expressing epitope-tagged versions of two PAL isoforms (PAL1 and PAL2) and C4H. Subcellular fractionation and protein gel blot analysis using epitope- and PAL isoform-specific antibodies indicated both microsomal and cytosolic locations of PAL1 but only cytosolic localization of PAL2. However, both PAL isoforms were microsomally localized in plants overexpressing C4H. These results, which suggest that C4H itself may organize the complex for membrane association of PAL, were confirmed using PAL-green fluorescent protein (GFP) fusions with localization by confocal microscopy. Coexpression of unlabeled PAL1 with PAL2-GFP resulted in a shift of fluorescence localization from endomembranes to cytosol in C4H overexpressing plants, whereas coexpression of unlabeled PAL2 with PAL1-GFP did not affect PAL1-GFP localization, indicating that PAL1 has a higher affinity for its membrane localization site than does PAL2. Dual-labeling immunofluorescence and fluorescence energy resonance transfer (FRET) studies confirmed colocalization of PAL and C4H. However, FRET analysis with acceptor photobleaching suggested that the colocalization was not tight.  相似文献   

7.
The subcellular localization of the sorting nexins (SNXs) in higher plants is a matter of controversy. Previous confocal laser scanning microscopy (CLSM studies on root cells from a transgenic Arabidopsis line expressing SNX1-GFP have suggested that this SNX is present on an endosome having characteristics of both the trans-Golgi network (TGN) and the multivesicular body (MVB). In contrast, SNX2a locates exclusively to the TGN when transiently expressed in tobacco mesophyll protoplasts. By performing immunogold electron microscopy on cryofixed Arabidopsis roots, we have tried to clarify the situation. Both SNX1-GFP and endogenous SNX2a locate principally to the TGN. Labeling of MVBs could not be confirmed with any certainty.  相似文献   

8.
A cryoprotective protein, HIC6, was expressed transgenically in tobacco, a cold-sensitive plant, and the localization of the protein within the cell as well as freezing tolerance of the transgenic tobacco was investigated. For constitutive expression of HIC6 in tobacco, its corresponding gene was subcloned into pBI121. Through the transformation with pBI121/hiC6, fifteen transgenic tobacco lines were acquired, out of which twelve lines expressed the HIC6 protein. None of the transgenic tobacco lines, however, showed significant differences in freezing tolerance from the control plants (wild-type and transformed with pBI121) at -1, -3, and -4 degrees C, with the exception that their freezing temperature was -2 degrees C. In order to increase the accumulation level of HIC6, pBE2113 with a stronger promoter was used. Eight lines expressed the protein out of thirteen lines transformed with pBE2113/hiC6. The accumulation levels of the protein were clearly higher in the tobacco plants transformed with pBE2113/hiC6 than in those with pBI121/hiC6. The HIC6 protein seemed to be localized in mitochondria of the transgenic tobacco plants. Freezing-tolerance tests at -1 - -4 degrees C showed that the degree of electrolyte leakage was significantly lower in the plants with pBE2113/hiC6 than in the control plants. A leaf browning observation also showed that high accumulation of HIC6 significantly suppressed injury caused by freezing to the transgenic tobacco at -3 degrees C.  相似文献   

9.
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.  相似文献   

10.
TW Greene  LC Hannah 《The Plant cell》1998,10(8):1295-1306
ADP-glucose pyrophosphorylase (AGP) represents a key regulatory step in polysaccharide synthesis in organisms ranging from bacteria to plants. Higher plant AGPs are complex in nature and are heterotetramers consisting of two similar but distinct subunits. How the subunits are assembled into enzymatically active polymers is not yet understood. Here, we address this issue by using naturally occurring null mutants of the Shrunken2 (Sh2) and Brittle2 (Bt2) loci of maize as well as the yeast two-hybrid expression system. In the absence of the maize endosperm large AGP subunit (SH2), the BT2 subunit remains as a monomer in the developing endosperm. In contrast, the SH2 protein, in the absence of BT2, is found in a complex of 100 kD. A direct interaction between SH2 and BT2 was proven when they were both expressed in yeast. Several motifs are essential for SH2:BT2 interaction because truncations removing the N or C terminus of either subunit eliminate SH2:BT2 interactions. Analysis of subunit interaction mutants (sim) also identified motifs essential for protein interactions.  相似文献   

11.
12.
Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.  相似文献   

13.
Plants are promising candidates as bioreactors for the production of oral recombinant proteins in the biopharmaceutical industry. As an initial step toward provision of an oral vaccine against the severe acute respiratory syndrome coronavirus (SARS-CoV), we have expressed a partial spike (S) protein of SARS-CoV in the cytosol of nuclear-transformed plants and in the chloroplasts of plastid-transformed plants. In the construction of both nuclear and plastid transformation vectors, a 2-kilobase nucleotide sequence encoding amino acids 1-658 of the SARS-CoV spike protein (S1) was modified with nucleotide changes, but not amino acid changes, to optimize codon usage for expression in plants. To investigate the subcellular localization of S1 during transient expression in tobacco leaves, a translational fusion consisting of S1 and the green fluorescent protein (GFP) was generated. Following agroinfiltration of tobacco leaves, analysis by laser confocal scanning microscopy revealed that the S1:GFP fusion protein was localized to the cytosol. In stable transgenic tobacco plants and lettuce plants generated by Agrobacterium-mediated transformation, tobacco and lettuce leaves were observed to express the S1 at high levels from the Cauliflower Mosaic Virus 35S promoter with Northern blot analysis. When the S1 was expressed in transplastomic tobacco, S1 messenger RNA and its corresponding protein were detected on Northern and Western blot analyses, respectively. Our results demonstrate the feasibility of producing S1 in nuclear- and chloroplast-transformed plants, indicating its potential in subsequent development of a plant-derived and safe oral recombinant subunit vaccine against the SARS-CoV in edible plants.  相似文献   

14.
通过遗传转化技术研究了拟南芥脂转移蛋白AtDHyPRP1在细胞中的定位及其对真菌病原体的抗性。采用PCR方法从拟南芥Ws生态型克隆了AtDHyPRP1基因,构建产生pRI101-AN-AtDHyPRP1植物双元表达载体和pCAMBIA1302-AtDHyPRP1-GFP融合表达载体,经农杆菌介导的叶盘和浸花法得到烟草和拟南芥转基因植株。AtDHyPRP1基因能够明显增加烟草对灰霉菌的抗性,转AtDHyPRP1烟草叶片的被侵染部位有大量H2O2积累,激光共聚焦显微观察发现AtDHyPRP1蛋白定位于细胞表面。说明AtDHyPRP1蛋白在合成后被分泌到细胞外执行特殊的功能,与植物抗病防御机制有关。  相似文献   

15.
Engineering a root-specific, repressor-operator gene complex   总被引:1,自引:0,他引:1  
Strong, tissue-specific and genetically regulated expression systems are essential tools in plant biotechnology. An expression system tool called a 'repressor-operator gene complex' (ROC) has diverse applications in plant biotechnology fields including phytoremediation, disease resistance, plant nutrition, food safety, and hybrid seed production. To test this concept, we assembled a root-specific ROC using a strategy that could be used to construct almost any gene expression pattern. When a modified E. coli lac repressor with a nuclear localization signal was expressed from a rubisco small subunit expression vector, S1pt::lacIn, LacIn protein was localized to the nuclei of leaf and stem cells, but not to root cells. A LacIn repressible Arabidopsis actin expression vector A2pot was assembled containing upstream bacterial lacO operator sequences, and it was tested for organ and tissue specificity using beta-glucuronidase (GUS) and mercuric ion reductase (merA) gene reporters. Strong GUS enzyme expression was restricted to root tissues of A2pot::GUS/S1pt::lacIn ROC plants, while GUS activity was high in all vegetative tissues of plants lacking the repressor. Repression of shoot GUS expression exceeded 99.9% with no evidence of root repression, among a large percentage of doubly transformed plants. Similarly, MerA was strongly expressed in the roots, but not the shoots of A2pot::merA/S1pt::lacIn plants, while MerA levels remained high in both shoots and roots of plants lacking repressor. Plants with MerA expression restricted to roots were approximately as tolerant to ionic mercury as plants constitutively expressing MerA in roots and shoots. The superiority of this ROC over the previously described root-specific tobacco RB7 promoter is demonstrated.  相似文献   

16.
17.
 Aquaporin 2 (AQP2) transfected into LLC-PK1 cells functions as a vasopressin-regulated water channel that recycles between intracellular vesicles and the plasma membrane upon vasopressin stimulation. The green fluorescent protein (GFP) of the jellyfish, Aequorea victoria, was used as an autofluorescent tag to monitor AQP2 trafficking in transfected LLC-PK1 cells. Two chimeras were constructed, one in which GFP was fused to the amino-terminus of AQP2 [GFP-AQP2(NT)] and the second in which it was fused to the carboxyl-terminus [AQP2-GFP(CT)]. The GFP-AQP2(NT) chimera trafficked in a regulated pathway from intracellular vesicles to the basolateral plasma membrane in response to vasopressin or forskolin stimulation of cells. In contrast, the AQP2-GFP(CT) chimera expressed in LLC-PK1 cells was localized constitutively on both apical and basolateral plasma membranes. The cellular location of this chimera was not modified by vasopressin or forskolin. Thus, while the GFP-AQP2(NT) chimera will be useful to study AQP2 trafficking in vitro, the abnormal, constitutive membrane localization of the AQP2-GFP(CT) chimera suggests that one or more trafficking signals exist on the carboxyl-terminus of the AQP2 protein. Accepted: 8 April 1998  相似文献   

18.
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.  相似文献   

19.
A cryoprotective protein, HIC6, was expressed transgenically in tobacco, a cold-sensitive plant, and the localization of the protein within the cell as well as freezing tolerance of the transgenic tobacco was investigated. For constitutive expression of HIC6 in tobacco, its corresponding gene was subcloned into pBI121. Through the transformation with pBI121/hiC6, fifteen transgenic tobacco lines were acquired, out of which twelve lines expressed the HIC6 protein. None of the transgenic tobacco lines, however, showed significant differences in freezing tolerance from the control plants (wild-type and transformed with pBI121) at ?1, ?3, and ?4°C, with the exception that their freezing temperature was ?2°C. In order to increase the accumulation level of HIC6, pBE2113 with a stronger promoter was used. Eight lines expressed the protein out of thirteen lines transformed with pBE2113/hiC6. The accumulation levels of the protein were clearly higher in the tobacco plants transformed with pBE2113/hiC6 than in those with pBI121/hiC6. The HIC6 protein seemed to be localized in mitochondria of the transgenic tobacco plants. Freezing-tolerance test at ?1 - ?4°C showed that the degree of electrolyte leakage was significantly lower in the plants with pBE2113/hiC6 than in the control plants. A leaf browning observation also showed that high accumulation of HIC6 significantly suppressed injury caused by freezing to the transgenic tobacco at ?3°C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号