首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Brickner  J M Sodetz 《Biochemistry》1985,24(17):4603-4607
The purified gamma subunit of the eighth component of human complement (C8) was used to characterize its site of interaction within C8 and to probe the ultrastructure of membrane-bound C5b-8 and C5b-9 complexes. Purification of gamma was accomplished by separating the disulfide-linked alpha-gamma subunit from the noncovalently associated beta chain and subjecting the former to limited reduction, alkylation, and ion-exchange chromatography. Upon mixing, purified alpha and gamma exhibited a high affinity for each other, as evidenced by their ability to form a noncovalent, equimolar complex at dilute concentrations and in the presence of excess serum albumin. Purified gamma also exhibited an affinity for C8', a previously described derivative that is functionally similar to C8 although it is composed of only alpha and beta. These results indicate that alpha possesses a specific site for interaction with gamma and that this site is preserved in the isolated subunit. Furthermore, this site remains accessible when alpha is associated with beta. In related experiments, gamma was found to specifically associate with membrane-bound C5b-8' and C5b-(8')9 complexes. These results indicate that the site for gamma interaction remains accessible on alpha in C5b-8' and is not shielded by C9 within C5b-(8')9. It is concluded that the gamma subunit of C8 is located on the surface of membrane-bound C5b-8 and C5b-9.  相似文献   

2.
Species-restricted lysis of complement refers to the relative inefficiency of complement to lyse cells from the homologous species. Restriction occurs at least at the steps involving C3/C5 convertase formation and the C9 insertion phase of the complement cascade, and is presumed to be mediated by inhibitory factors in the target cell membrane. In this study, we have examined whether decay accelerating factor (DAF), a membrane protein known to modulate C3/C5 convertase activities on cell surfaces, acts as a regulatory protein in species-restricted lysis of human erythrocyte (E). The role of DAF was assessed in homologous lysis by the classic pathway, in reactive lysis, and in lytic steps requiring C8 and C9. The results indicated that DAF participated in regulating C3/C5 deposition on the surface of homologous E, but had no effect on homologous restriction in reactive lysis and in the reaction of C8 and C9 with antibody-sensitized E C1-7. Treatment of E with pronase or with dithiothreitol (DTT) abolished the restricting effect of homologous C8/C9, indicating that species-restricted lysis by C5b-9 involves membrane factor(s) sensitive to pronase and DTT.  相似文献   

3.
Recently, a protein isolated from the membrane of human E, the so-called C8 binding protein (C8bp), has been described. C8bp is characterized as a 65-kDa protein that binds to C8 and inhibits the C5b-9-mediated lysis in a homologous system. In the present study, membranes of peripheral blood cells were tested for the presence of C8bp by SDS-PAGE and immunoblotting. In all cells a protein band reacting with anti-C8bp was seen, the Mr, however, was only about 50 kDa. To further analyze the 50-kDa protein, we isolated the protein by phenol-water extraction and isoelectric focusing from papain-treated platelets. The isolated protein behaved similar to the E-derived C8bp: it inhibited the lysis of model target cells by C5b-9. To examine the function of C8bp in platelets, we tested platelets from patients suffering from paroxysmal nocturnal hemoglobinuria (PNH). These platelets were deficient in C8bp, being in accordance with their higher lytic susceptibility in vitro. In response to sublytic C5b-9 doses, the PNH platelets released considerably more serotonin and thromboxane B2 than normal platelets. By addition of purified C8bp, the thromboxane B2 release was suppressed, indicating that C8bp not only restricts the lytic complement attack, but also regulates the C5b-9-mediated stimulation of target cells. Thus, lack of C8bp might not only result in enhanced hemolysis, but also in enhanced stimulation of platelets, which in turn might contribute to the thrombotic complications seen in some PNH-type III patients.  相似文献   

4.
A soluble form of homologous restriction factor (HRF-U) was isolated from normal human urine. With respect to m.w. (65,000) and immunoblotting characteristics, it resembled membrane HRF (HRF-M) that had been isolated from human E membranes. The protein exhibited limited cross-reactivity with the channel-forming proteins of C and cytotoxic lymphocytes. It inhibited reactive lysis of E by human C5b-9. Inhibition occurred at the attachment stage of C5b-7 to target cells, rather than at the C8 or C9 stage of membrane attack complex assembly which is inhibited by HRF-M. In this respect, HRF-U acts analogously to S protein of serum, but no immunochemical relationship between these two proteins was detected. HRF-U might be derived from the soluble HRF detected in cytoplasmic granules of killer lymphocytes.  相似文献   

5.
The capacity of the human complement regulatory protein CD59 to interact with terminal complement proteins in a species-selective manner was examined. When incorporated into chicken E, CD59 (purified from human E membranes) inhibited the cytolytic activity of the C5b-9 complex in a manner dependent on the species of origin of C8 and C9. Inhibition of C5b-9-mediated hemolysis was maximal when C8 and C9 were derived from human (hu) or baboon serum. By contrast, CD59 showed reduced activity when C8 and C9 were derived from dog or sheep serum, and no activity when C8 and C9 were derived from either rabbit or guinea pig (gp) serum. Similar specificity on the basis of the species of origin of C8 and C9 was also observed for CD59 endogenous to the human E membrane, using functionally blocking antibody against this cell surface protein to selectively abrogate its C5b-9-inhibitory activity. When E bearing human CD59 were exposed to C5b-8hu, CD59 was found to inhibit C5b-9-mediated lysis, regardless of the species of origin of C9, suggesting that the inhibitory function of CD59 can be mediated through recognition of species-specific domains expressed by human C8. Consistent with this interpretation, CD59 was found to bind to C5b-8hu but not to C5b67hu or C5b67huC8gp. Although CD59 failed to inhibit hemolysis mediated by C5b67huC8gpC9gp, its inhibitory function was observed for C5b67huC8gpC9hu, suggesting that, in addition to its interaction with C5b-8hu, CD59 also interacts in a species-selective manner with C9hu incorporated into C5b-9. Consistent with this interpretation, CD59 was found to bind both C5b67huC8gpC9hu and C5b-8huC9gp, but not C5b67huC8gpC9gp. Taken together, these data suggest that the capacity of CD59 to restrict the hemolytic activity of human serum complement involves a species-selective interaction of CD59, which involves binding to both the C8 and C9 components of the membrane attack complex. Although CD59 expresses selectivity for C8 and C9 of human origin, this "homologous restriction" is not absolute, and this human complement regulatory protein retains functional activity toward C8 and C9 of some nonprimate species.  相似文献   

6.
Gerstner RB  Pak Y  Draper DE 《Biochemistry》2001,40(24):7165-7173
Protein S4 is essential for bacterial small ribosomal subunit assembly and recognizes the 5' domain (approximately 500 nt) of small subunit rRNA. This study characterizes the thermodynamics of forming the S4-5' domain rRNA complex from a thermophile, Bacillus stearothermophilus, and points out unexpected differences from the homologous Escherichia coli complex. Upon incubation of the protein and RNA at temperatures between 35 and 50 degrees C under ribosome reconstitution conditions [350 mM KCl, 8 mM MgCl2, and 30 mM Tris (pH 7.5)], a complex with an association constant of > or = 10(9) M(-1) was observed, more than an order of magnitude tighter than previously found for the homologous E. coli complex under similar conditions. This high-affinity complex was shown to be stoichiometric, in equilibrium, and formed at rates on the order of magnitude expected for diffusion-controlled reactions ( approximately 10(7) M(-1) x s(-1)), though at low temperatures the complex became kinetically trapped. Heterologous binding experiments with E. coli S4 and 5' domain RNA suggest that it is the B. stearothermophilus S4, not the rRNA, that is activated by higher temperatures; the E. coli S4 is able to bind 5' domain rRNA equally well at 0 and 37 degrees C. Tight complex formation requires a low Mg ion concentration (1-2 mM) and is very sensitive to KCl concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 9.3]. The protein has an unusually strong nonspecific binding affinity of 3-5 x 10(6) M(-1), detected as a binding of one or two additional proteins to the target 5' domain RNA or two to three proteins binding a noncognate 23S rRNA fragment of the approximately same size. This binding is not as sensitive to monovalent ion concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 6.3] as specific binding and does not require Mg ion. These findings are consistent with S4 stabilizing a compact form of the rRNA 5' domain.  相似文献   

7.
A human E membrane protein that inhibits lysis by the purified human C5b-9 proteins was isolated and characterized. After final purification, the protein migrated as an 18- to 20-kDa band by SDS-PAGE. Elution from gel slices and functional assay after SDS-PAGE (nonreduced) confirmed that all C5b-9 inhibitory activity of the purified protein resided in the 18- to 20-kDa band. Phosphatidylinositol-specific phospholipase C digestion of the purified protein abolished 50% of its C5b-9 inhibitory activity, and removed approximately 15% of the protein from human E. Western blots of normal and paroxysmal nocturnal hemoglobinuria E revealed an absence of the 18- to 20-kDa protein in the paroxysmal nocturnal hemoglobinuria E cells. The identity of this E protein with leukocyte Ag CD59 (P18, HRF20) was confirmed immunochemically and by N-terminal amino acid sequence analysis. A blocking antibody raised against the purified protein reacted with a single 18- to 20-kDa band on Western blots of human erythrocyte membranes. Prior incubation of human E with the F(ab) of this antibody increased subsequent lysis by the purified human C5b-9 proteins. Potentiation of C5b-9-mediated lysis was observed when erythrocytes were preincubated with this blocking antibody before C5b-9 assembly was initiated, or, when this antibody was added after 30 min, 0 degrees C incubation of C5b-8-treated E with C9. Chicken E incubated with purified CD59 were used to further characterize the mechanism of its C-inhibitory activity. Preincorporation of CD59 into these cells inhibited lysis by C5b-9, regardless of whether CD59 was added before or after assembly of the C5b-8 complex. When incorporated into the membrane, CD59 inhibited binding of 125I-C9 to membrane C5b-8 and reduced the extent of formation of SDS-resistant C9 polymer. The inhibitory effect of CD59 on 125I-C9 incorporation was most pronounced at near-saturating input of C9 (to C5b-8). By contrast, CD59 did not inhibit either C5b67 deposition onto the cell surface, or, binding of 125I-C8 to preassembled membrane C5b67. Taken together, these data suggest that CD59 exerts its C-inhibitory activity by limiting incorporation of multiple C9 into the membrane C5b-9 complex.  相似文献   

8.
Previous studies have demonstrated that in general, nucleated cells are more resistant to killing by serum complement than are erythrocytes. During studies aimed at defining the mechanisms of nucleated cell resistance, we found that the human histiocytic cell line U937 was easily lysed by homologous serum. U937 cells were also killed by serum depleted of C9, but not by serum depleted of C8, implying that the C5b-8 complex was sufficient to cause lysis of these cells. Enumeration of complexes on the cell surface demonstrated that approximately 40-fold more complexes were required to lyse U937 cells in the absence of C9 than in the presence of an excess of C9. Examination of the effects of small amounts of C9 on lysis of U937 cells by the C5b-8 complex demonstrated that at very low doses, C9 inhibited C5b-8 mediated lysis. The use of radiolabeled anti-C8 antibody showed that C5b-8 complexes were eliminated from the surface of U937 cells at 37 degrees C, and C9 at the dose causing inhibition of lysis accelerated the elimination of complexes. These results suggest that the increased lytic potential resulting from binding of small amounts of C9 to C5b-8 complexes is outweighed by enhanced elimination of complexes resulting in decreased cell death.  相似文献   

9.
Human C8 is one of five components of the membrane attack complex of complement. It is an oligomeric protein composed of three subunits (C8 alpha, C8 beta, and C8 gamma) that are derived from different genes. C8 alpha and C8 beta are homologous and both contain a pair of tandemly arranged N-terminal modules [thrombospondin type 1 (TSP1) + low-density lipoprotein receptor class A (LDLRA)], an extended middle segment referred to as the membrane attack complex/perforin region (MACPF), and a pair of C-terminal modules [epidermal growth factor (EGF) + TSP1]. During biosynthetic processing, C8 alpha and C8 gamma associate to form a disulfide-linked dimer (C8 alpha-gamma) that binds to C8 beta through a site located on C8 alpha. In this study, the location of binding sites for C8 beta and C8 gamma and the importance of the modules in these interactions were investigated by use of chimeric and truncated forms of C8 alpha in which module pairs were either exchanged for those in C8 beta or deleted. Results show that exchange or deletion of one or both pairs of modules does not abrogate the ability of C8 alpha to form a disulfide-linked dimer when coexpressed with C8 gamma in COS cells. Furthermore, each chimeric and truncated form of C8 alpha-gamma retains the ability to bind C8 beta; however, only those containing the TSP1 + LDLRA modules from C8 alpha are hemolytically active. These results indicate that binding sites for C8 beta and C8 gamma reside within the MACPF region of C8 alpha and that interaction with either subunit is not dependent on the modules. They also suggest that the N-terminal modules in C8 alpha are important for C9 binding and/or expression of C8 activity.  相似文献   

10.
Monoclonal antibodies (Mab) with specificity for protein I (PI) from Neisseria gonorrhoeae (GC) were examined for bactericidal activity. Mab 4G5 (gamma 3), ID3 (gamma 2a), and 1G6 (gamma 2a) bound to surface-exposed epitopes on PI of GC strain R11 (IA serotype) as assessed by co-agglutination and 125I protein A uptake. Mab 2H1 (gamma 3) that were directed against IB serotype strains and Mab 2E9 (gamma 2a) were negative in co-agglutination and protein A uptake assays and served as controls for some experiments. Only 4G5 and 1D3 were bactericidal for R11 when presensitized organisms were incubated in 10% absorbed, pooled normal human serum (PNHS) or 10% hypogammaglobulinemic serum (H gamma S) despite binding of nearly equivalent numbers of 4G5, 1D3, and 1G6 to R11 during presensitization, as assessed by 125I-protein A uptake. These Mab activated complement to a similar extent on GC R11, leading to deposition of 56.4 X 10(3), 61.9 X 1093), and 47.1 X 10(3) molecules of C3/organism during incubation in 10% C8-deficient serum. Deposition occurred almost exclusively via the classical complement pathway. Measurement of complement component C9 binding to R11 during incubation in H gamma S showed 35,700 molecules of C9/organism with 4G5, 32,600 C9/organism with 1D3, and surprisingly, 29,600 C9/organism with 1G6. Eight thousand four hundred molecules of C9/organism bound to 2E9-coated organisms, 6000 C9/organism to 2H1-coated bacteria, and 3600 C9/organism to nonpresensitized organisms. The C5b-9 complex deposited by 4G5 had a different sedimentation profile by sucrose density gradient analysis from the C5b-9 complex deposited by 1G6, consistent with a different molecular configuration of the bound complex. Mab 1G6 and 1D3, but not 2E9 or 2H1, were able to compete with 125I-4G5 for binding to GC R11. A Mab (2E6) directed against protein III of GC competed weakly with 125I-4G5 for binding to GC R11. Mab 1G6, but not 1D3, blocked 4G5-dependent killing in a dose-related fashion. Both 4G5 and IG6 reacted weakly with native PI of GC R11 by immunoblotting, but neither Mab recognized the 34,800 m.w. fragment of PI generated by trypsin and chymotrypsin treatment of outer membranes. In contrast, 2E9 reacted strongly by immunoblot with both native and cleaved PI of GC R11, suggesting binding to buried determinants of PI. These experiments show that Mab directed against identical or closely associated, surface-exposed epitopes on gonococcal PI differ markedly in bactericidal activity, despite leading to deposition of nearly equivalent numbers of C3 and C9 molecules per organism.  相似文献   

11.
Human C8 gamma is a 22 kDa subunit of complement component C8, which is one of five components (C5b, C6, C7, C8, C9) that interact to form the cytolytic membrane attack complex (MAC) of complement. C8 contains three nonidentical subunits (alpha, beta, gamma) that are products of different genes. These subunits are arranged asymmetrically to form a disulfide-linked C8 alpha-gamma dimer that is noncovalently associated with C8 beta. C8 alpha and C8 beta are homologous to C6, C7 and C9 and together these proteins comprise what is referred to as the 'MAC protein family'. By comparison, C8 gamma is distinct in that it belongs to the lipocalin family of small, secreted proteins which have the common ability to bind small hydrophobic ligands. While specific roles have been identified for C8 alpha and C8 beta in the formation and function of the MAC, a function for C8 gamma and the identity of its ligand are unknown. This review summarizes the current status of C8 gamma structure and function and the progress made from efforts to determine its role in the complement system.  相似文献   

12.
P J Sims 《Biochemistry》1984,23(14):3248-3260
Human complement protein C9 was covalently labeled with the fluorescent chromophore fluorescein isothiocyanate (FITC) with only a small reduction in the cytolytic activity of the protein. Polymerization of the labeled protein--either by incubating with lipid vesicles treated with complement proteins C5b-8 (activating the C5b-9 membrane lesion) or by heating the protein [Tschopp, J., Muller-Eberhard, H.J., & Podack, E.R. (1982) Nature (London) 298, 534]--resulted in a 40-60% decrease in the fluorescence emission from FITC. The decrease in total fluorescence was accompanied by an increase in the steady-state anisotropy following activation and polymerization of FITC-C9 by C5b-8 membranes, while heat-induced aggregation of the protein resulted in a dramatic depolarization of fluorescence. Only small changes in either the absorbance spectrum or fluorescence lifetime of the chromophore were detected upon FITC-C9 polymerization. Evidence is presented that the measured changes in FITC fluorescence upon C9 activation are due to self energy transfer between closely apposed fluorescein chromophores which occur in the polymerized form of the protein. The significance of these observations to the molecular structure of the assembled C5b-9 complex is discussed, as are the potential applications of this fluorescent derivative of C9.  相似文献   

13.
14.
P J Sims  T Wiedmer 《Biochemistry》1984,23(14):3260-3267
The fluorescence self-quenching by energy transfer of FITC-C9, a fluoresceinated derivative of human complement protein C9 [Sims, P.J. (1984) Biochemistry (preceding paper in this issue)], has been used to monitor the kinetics of C9 polymerization induced by the membrane-associated complex of complement proteins C5b-8. Time-based measurements of the fluorescence change observed during incubation of FITC-C9 with C5b-8-treated sheep red blood cell ghost membranes at various temperatures revealed that C9 polymerization induced by the C5b-8 proteins exhibits a temperature dependence similar to that previously reported for the complement-mediated hemolysis of these cells, with an Arrhenius activation energy for FITC-C9 polymerization of 13.3 +/- 3.2 kcal mol-1 (mean +/- 2 SD). Similar measurements obtained with C5b-8-treated unilamellar vesicles composed of either egg yolk phosphatidylcholine (egg PC), dipalmitoylphosphatidylcholine (DPPC), or dimyristoylphosphatidylcholine (DMPC) revealed activation energies of between 20 and 25 kcal mol-1 for FITC-C9 polymerization by C5b-8 bound to these membranes. Temperature-dependent rates of C9 polymerization were observed to be largely unaffected by the phase state of membrane lipid in the target C5b-8 vesicles. The significance of these observations of the mechanism of C9 activation of membrane insertion is considered.  相似文献   

15.
C8 binding protein (C8bp) is a 65-kDa membrane glycoprotein that inhibits complement-mediated lysis by homologous C5b-9. C8bp was first identified on human erythrocytes, but could also be detected on peripheral blood cells, platelets, glomerular cells and synovial fibroblasts. Lack of C8bp as seen in patients with paroxysmal nocturnal hemoglobinuria type III results in enhanced susceptibility of the cells toward C5b-9. We studied C8bp expression on the promonocytic cell line U937. In addition to the membrane-bound C8bp, a cytoplasmic form of C8bp could also be identified by immunofluorescence, blotting, and precipitation. Stimulation of the cells with IL-1 beta, endotoxin, IFN-gamma, or phorbol ester increased C8bp surface expression. Because cycloheximide did not inhibit enhanced surface expression, it was most probably mobilized from cytoplasmic reservoirs. Thus, resistance of nuclear cells to complement attack seems to be based on two events: 1) the removal of the C5b-9 complex from the membrane; and 2) expression of regulatory surface proteins such as C8bp, which inhibit C5b-9-mediated lysis. We propose that the C8bp mobilization by cytokines might provide an additional protection against complement attack by its known interference with the C5b-9 assembly.  相似文献   

16.
Beta-Endorphin has been reported to specifically interact with SC5b-9 complement complexes via non-opioid binding sites. Covalent cross-linking of [125I]beta H-endorphin to SC5b-9 and analysis of the cross-linking products by gel electrophoresis and subsequent autoradiography revealed a single specifically labelled species which was identical with the S protein subunit of the complement complex. In contrast to SC5b-9, no cross-linking of labelled beta-endorphin to subunits of C5b-9(m) could be observed, indicating that beta-endorphin binding to SC5b-9 was mediated exclusively via S protein. Beta-Endorphin binding to SC5b-9 was compared with binding to purified S protein. Whereas beta-endorphin binding to purified S protein was only modest, complex formation of S protein with complement proteins led to a strong increase in beta-endorphin-binding site concentration, compatible with the exposure of primarily cryptic beta-endorphin-binding sites on S protein.  相似文献   

17.
The association of the eighth (C8) and ninth (C9) components of human complement within membrane-bound C5b-9 was investigated using the photosensitive cross-linking reagent N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate. Reaction of this reagent with either the purified alpha-gamma or beta subunit of C8 resulted in the introduction of 6-8 mol/mol of photosensitive 6-(4'-azido-2'-nitrophenylamino)hexanoate (ANH) as an intrinsic ligand on each protein. The resulting ANH-(alpha-gamma) or ANH-(beta) was capable of recombining with equimolar amounts of beta or alpha-gamma, respectively, to yield ANH-C8. Parallel modifications of purified C9 resulted in incorporation of 3-4 mol/mol of ANH-ligand. Both ANH-C8 and ANH-C9 retained their ability to incorporate into C5b-9. Two approaches were used to determine the proximity of C8 subunits to C9 within C5b-9. In one, the complex was assembled on erythrocytes by incubating EAC1-7 cells separately with each form of ANH-C8 and subsequently saturating with 125I-C9. After lysis, membranes were irradiated, solubilized, and analyzed by gel electrophoresis. Cross-linking was assessed by a shift in electrophoretic mobility of 125I-C9 to a higher molecular weight. Results using either form of ANH-C8 in C5b-9 showed that, although at least 30% was involved in cross-linking, none was cross-linked to C9. Similar results were obtained using a second approach in which cross-linker and radiolabel were transposed between C8 and C9. Here, EAC1-7 cells were incubated first with 125I-C8 containing either 125I-(alpha-gamma) or 125I-(beta) and subsequently with ANH-C9. Although at least 48% of ANH-C9 in C5b-9 was involved in cross-linking in these experiments, no cross-linking to either subunit of C8 was detected. These results suggest that C8 is not in close physical association with C9 within membrane-bound C5b-9.  相似文献   

18.
The aim of this study was to identify constituents of the intermediate C5b-7 complex of human complement that mediate binding of C8 and formation of C5b-8. Analysis of interactions between purified C8 and C5, C6, or C7 indicate that C5 and C8 associate to form a dimer in solution. This interaction is specific and involves a single C5 binding site located on the beta-subunit of C8. Simultaneous interaction of C8 with C5 and C9 in solution suggests that during assembly of the cytolytic C5b-9 complex on membranes, C8 binds to C5b-7 through association of beta with C5b, after which C9 associates through interaction with the previously identified C9-specific site on the alpha-subunit. Other evidence of interaction with C5b was provided by the fact that C8 can bind purified C5b6. Also, in situ cross-linking experiments showed that within C5b-8, the beta-subunit is in close proximity to C5b. These results indicate that C8 binding to C5b-7 is mediated by a specific C5b recognition site on beta, thus explaining the requirement for this subunit in C5b-8 formation. They also reveal that C5b contains a specific site for interaction with beta.  相似文献   

19.
A new D-mannose/D-glucose-specific lectin (B-SJA-II) was isolated from the bark of the Japanese pagoda tree, Sophora japonica. B-SJA-II was separated from a well known D-galactose/N-acetyl-D-galactosamine-specific lectin (B-SJA-I) by affinity chromatography on lactamyl-Sepharose, then purified by affinity chromatography on maltamyl-Sepharose. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, B-SJA-II gave four bands: subunit a-1 (Mr = 19,400), a-2 (Mr = 18,200), b-1 (Mr = 15,000), and b-2 (Mr = 13,200). Carbohydrate analysis and binding study with horseradish peroxidase-labeled lectins on the bands electroblotted onto polyvinylidene difluoride membrane showed that the three subunits other than b-2 have N-linked oligosaccharides typical of plant glycoproteins. The binding assay with horseradish peroxidase-glycoproteins revealed that all the subunits can bind sugar specifically with fetuin and asialofetuin. Furthermore, B-SJA-II aggregated to form precipitates in the absence of a specific sugar and became soluble upon addition of the specific sugar. The results indicate that each subunit has a sugar-binding site for the mannosyl core of N-linked oligosaccharide chains and recognizes each other sugar specifically to form aggregates. According to the N-terminal amino acid sequences obtained, the subunits are classified into two groups. The first group (a-1 and a-2) has an N-terminal sequence 50% identical with that of other S. japonica lectins (Hankins, C. N., Kindinger, J. I., and Shannon, L. M. (1988) Plant Physiol. 86, 67-70) and the amino acid sequence initiating at position 123 of concanavalin A (Cunningham, B. (1975) J. Biol. Chem. 250, 1503-1512), while the N-terminal sequence of the second group (b-1 and b-2) is homologous to that of concanavalin A, but completely different from that of the first group.  相似文献   

20.
The eighth component of human complement (C8) is a serum protein containing three nonidentical subunits (alpha, beta, gamma) that are arranged as a disulfide-linked alpha-gamma dimer and a noncovalently associated beta chain. In earlier genetic studies, electrophoretic analysis of C8 protein polymorphisms revealed several allelic variants of alpha-gamma and beta. These were governed by separate loci designated C8A and C8B for alpha-gamma and beta, respectively. Genetic linkage analyses indicated that these loci were linked to each other and to chromosome 1 marker loci PGM1 and Rh, but it was unclear at the time if C8A was a single locus coding for a single-chain precursor form of alpha-gamma or if separate loci existed for alpha and gamma. Since evidence now indicates that alpha, beta, and gamma are encoded by separate genes, cDNA probes corresponding to each subunit were used to make direct assignments of the individual loci. Analysis of somatic cell hybrids revealed that only the alpha and beta loci are located on chromosome 1. Parallel analysis of genomic DNA digests using 5' and 3'-specific cDNA probes showed they are physically linked (less than 2.5 kb) and oriented 5' alpha-beta 3'. Further probing of the hybrid panel revealed that gamma is located on chromosome 9q. Thus, the observed genetic linkage of alpha-gamma to beta must be determined solely by alpha. In accordance with these findings, the C8 loci should now be designated C8A, C8B, and C8G for alpha, beta and gamma, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号