首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proximal mouse Chromosome (Chr) 11 shares regions of orthology with the candidate gene region for the imprinting growth disorder Silver-Russell syndrome (SRS) on human Chr 7p. It has previously been shown that mice with two maternal or two paternal copies (duplications, Dp) of proximal Chr 11 exhibit reciprocal growth phenotypes. Those with two paternal copies show fetal and placental overgrowth, while those with two maternal copies are growth retarded. The growth retardation observed in the latter is reminiscent of the intrauterine growth restriction (IUGR) observed in SRS patients with maternal uniparental disomy for Chr 7 (mUPD7). We have carried out a methylation-sensitive representational difference analysis (Me-RDA) screen to look for regions of differential methylation (DMRs) associated with imprinted genes. For these experiments, we have used mouse embryos with uniparental duplications of Chrs 11 and 7 proximal to the breakpoint of the reciprocal translocation T(7;11)40Ad. Two previously known imprinted loci associated with paternal allele hypomethylation were recovered on proximal mouse Chr 11, U2af1-rs1 and Meg1/Grb10. These two genes map 15 cM apart, so it seems likely that they are within separate imprinted domains that do not contain additional DMRs. The known imprinted gene Peg3, located on mouse proximal Chr 7, was also detected in our screen. The finding that Peg3 was differentially methylated in embryos with uniparental inheritance of proximal Chr 7 confirms that Peg3 is located proximal to the breakpoint of T40Ad in G-band 7A2. Because GRB10 has previously been reported to be a candidate gene for SRS, we analysed 22 patients for epimutations of the GRB10 differentially methylated region that could lead to the altered expression of this gene. No such mutations were found.  相似文献   

2.
An elite, three-generation family from the USDA Meat Animal Research Center twinning population was examined for evidence of ovulation rate quantitative trait loci (QTL). This work was both a continuation of previously reported results suggesting evidence for ovulation rate QTL on bovine Chromosome (Chr) 7 and an extension of a genome-wide search for QTL. Additional markers were typed on Chr 7 to facilitate interval mapping and testing of the hypothesis of one versus two QTL on that chromosome. In addition, 14 other informative markers were added to a selective genotyping genome screening of this family, and markers exhibiting nominal significance were used to identify chromosomal regions that were then subjected to more exhaustive analysis. For Chr 7, a total of 12 markers were typed over a region spanning the proximal two-thirds of the chromosome. Results from interval mapping analyses indicated evidence suggestive of the presence of QTL (nominal P < 0.00077) within this region. Subsequent analysis with a model postulating two QTL provided evidence (P < 0.05) for two rather than one QTL on this chromosome. Preliminary analysis with additional markers indicated nominal significance (P < 0.05) for regions of Chrs 5, 10, and 19. Each of these regions was then typed with additional markers for the entire three-generation pedigree. Significant evidence (P < 0.000026) of ovulation rate QTL was found for Chrs 5 and 19, while support on Chr 10 failed to exceed a suggestive linkage threshold (P > 0.00077). Received: 14 May 1999 / Accepted: 14 October 1999  相似文献   

3.
A line of transgenic mouse T604 transmitted a transgene to progeny together with a set of chromosomes with a reciprocal translocation. The transgene was integrated at a single site in the translocated chromosomes, as revealed by fluorescence in situ hybridization. The transgenic hemizygous males, also heterozygous for the translocation of chromosomes, showed apparently normal spermatogenesis, while the males homozygous for the transgene as well as for the translocated chromosomes showed a defect in spermatogenesis. Considering that the genetic rearrangement by either insertion of the transgene or the chromosome translocation in the T604 mouse line might have caused a recessive mutation in a gene indispensable for spermatogenesis, we have mapped the transgene integration site and the translocation breakpoints in mouse chromosomes. Linkage analysis with SSLP markers showed that the loci for the transgene and the translocation breakpoints were closely located to D5Mit24 on Chromosome (Chr) 5, and to a region between D19Mit19 and D19Jpk2 on Chr 19. Mea2 gene, mapped only 2 cM from D5Mit24 and known to show male-specific enhanced expression in the testis, was analyzed as a candidate for the gene disrupted in T604 transgenic mice. Southern blot analysis revealed that Mea2 gene was indeed disrupted in T604 mice, and Northern blot analysis of the testis RNA showed that the expression of Mea2 was annihilated in the testis of T604 transgenic homozygotes. Received: 8 July 1998 / Accepted: 23 September 1998  相似文献   

4.
The plasma membrane Na/H exchanger plays an essential role in regulating intracellular pH and Na+ concentration and has been implicated in several pathophysiological conditions, including essential hypertension and congenital secretory diarrhea. Four isoforms of the Na/H exchanger encoded by separate genes have recently been identified by cDNA cloning. To map their locations in the human and rat genomes, rat isoform-specific cDNA probes were hybridized to Southern filters containing panels of somatic cell hybrids that segregate either human or rat chromosomes. The rat Nhe1 gene was assigned to Chromosome (Chr) 5, extending the homology with human chromosome 1p that has previously been shown to contain the human NHE1 gene. The genes encoding the NHE-2 and NHE-4 isoforms were syntenic in the two species and assigned to rat Chr 9 and human Chr 2. A single Nhe3 gene was detected in rat and assigned to Chr 1. In contrast, although evidence to date has suggested a single human NHE3 gene on Chr 5, two NHE3 genes, NHE3A and NHE3B, were identified and assigned to Chrs 10 and 5, respectively. Interestingly, rat Chr 1 has recently been found to carry a gene controlling systolic blood pressure upon sodium loading in stroke-prone, spontaneously hypertensive rats. Thus, this and other evidence implicates rat Nhe3 as a possible candidate gene in this disease process.  相似文献   

5.
By use of rat cDNA probes and a panel of cell hybrids segregating rat chromosomes, the genes encoding three pyridoxal 5-phosphate (PLP)-dependent decarboxylases—namely, DOPA-decarboxylase (Ddc), glutamic acid decarboxylase 1 and 2 (Gad1 and Gad2)—were assigned to rat Chromosomes (Chrs) 14, 3, and 17, respectively. If one takes into account chromosome localizations in the human and the mouse, the present results (i) show that a synteny group is retained on rat Chr 14, human Chr 7, and mouse Chr 11 (Ddc); (ii) strengthen the homology relation known between rat Chr 3 and human and mouse Chrs 2 (Gad1); (iii) suggest that rat Chr 17 has no extensive homology to any human chromosome; and (iv) suggest the order (Prl, Fdp)-Tpl2-Gad2 on the rat Chr 17.  相似文献   

6.
The mammalian H1 histone gene complement consists of at least seven H1 protein isoforms. These include five S-phase-dependent H1 protein subtypes and two more distantly related proteins, which are expressed upon terminal differentiation (H10) or during the pachytene stage of spermatogenesis (H1t). In the past, three replication-dependent murine H1 genes plus the H1 0 and H1t genes have been isolated and characterized. In this report, we describe the sequences of two more H1 genes, and we show that all five murine replication-dependent H1 genes and the H1t gene map to the region A2-3 on Chromosome (Chr) 13. This is in agreement with our previous finding that the human H1 histone gene complement maps to 6p21.3, which corresponds to the A2-3 region on the murine Chr 13. Previous reports have shown that the replication-independent H1 0 genes map to syntenic regions on Chrs 22 (human H10) and 15 (murine H1 0).  相似文献   

7.
Eleven rat genes have been assigned to rat chromosomes by use of mouse × rat somatic hybrids and/or use of linkage to known chromosome markers. Among them, the genes for the inducible nitric oxide synthase (Nos2) and for a vasoactive intestinal peptide receptor (Vipr) are potential candidates for genetic regulation of blood pressure and were localized to rat Chromosomes (Chrs) 10 and 8 respectively. Genes for gastric H,K-ATPase alpha subunit (Atp4a). Class I alcohol dehydrogenase (Adh), and aldolase C (Aldoc) were localized to Chrs 1, 2, and 10 respectively, and thus provide more DNA markers for genetic mapping of quantitative trait loci for blood pressure on those chromosomes. Genes for alkaline phosphatase (Alp1) and cardiac AE-3 Cl-/HCO3 - exchanger (Ae3) were both localized to Chr 9. Genes for glutamate dehydrogenase (Glud) and gastric H,K-ATPase beta subunit (Atp4b) were localized to Chr 16. The ornithine decarboxylase (Odc) gene and ornithine decarboxylase pseudogene (Odcp) were localized to Chrs 6 and 11 respectively.  相似文献   

8.
The Rb1 gene has been implicated with retinoblastoma and is located on human Chromosome (Chr) 13q14.2. A unique sequence human Rb1 cosmid DNA probe has been used to localize this region on apes' Chr 14 by the FISH technique. The conservation of the Rb1 gene in higher primates at the corresponding equivalent chromosome locus (14q14) of the human may serve as a phylogenetic marker to further trace the evolutionary pathway of human descent. Received: 2 February 1996 / Accepted: 9 April 1996  相似文献   

9.
C57BL/6J-c2J (c2J) albino mice showed much less damage to their photoreceptors after exposure to prolonged light than BALB/c mice and seven other albino strains tested. There were no gender differences, and preliminary studies suggested that the c2J relative protective effect was a complex trait. A genome-wide scan using dinucleotide repeat markers was carried out for the analysis of 194 progeny of the backcross (c2J × BALB/c)F1× c2J and the thickness of the outer nuclear layer (ONL) of the retina was the quantitative trait reflecting retinal damage. Our results revealed a strong and highly significant quantitative trait locus (QTL) on mouse Chromosome (Chr) 3 that contributes almost 50% of the c2J protective effect, and three other very weak but significant QTLs on Chrs 9, 12, and 14. Interestingly, the Chrs 9 and 12 QTLs corresponded to relative susceptibility alleles in c2J (or relative protection alleles in BALB/c), the opposite of the relative protective effect of the QTLs on Chrs 3 and 14. We mapped the Rpe65 gene to the apex of the Chr 3 QTL (LOD score = 19.3). Northern analysis showed no difference in retinal expression of Rpe65 message between c2J and BALB/c mice. However, sequencing of the Rpe65 message revealed a single base change in codon 450, predicting a methionine in c2J and a leucine in BALB/c. When the retinas of aging BALB/c and c2J mice reared in normal cyclic light were compared, the BALB/c retinas showed a small but significant loss of photoreceptor cells, while the c2J retinas did not. Finding light damage-modifying genes in the mouse may open avenues of study for understanding age-related macular degeneration and other retinal degenerations, since light exposures may contribute to the course of these diseases. Received: 14 December 1999 / Accepted: 18 February 2000  相似文献   

10.
The High Mobility Group 1 protein (HMG1) is an abundant and highly conserved chromosomal protein. Mouse HMG1 is encoded by the Hmg1 gene, containing four introns, but the murine genome contains many related sequences that are mostly retrotransposed pseudogenes. By using an interspecific cross, we have mapped the functional Hmg1 gene on mouse Chromosome (Chr) 5 and seven Hmg1-related sequences on Chrs 6, 8, 17, 18, and X.  相似文献   

11.
To elucidate the genetic factors underlying non-insulin-dependent diabetes mellitus (NIDDM), we performed genome-wide quantitative trait locus (QTL) analysis, using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF rat is an excellent animal model of NIDDM because the features of the disease closely resemble human NIDDM. Genetic dissection with two kinds of F2 intercross progeny, from matings between the OLETF rat and non-diabetic control rats F344 or BN, allowed us to identify on Chromosome (Chr) 1 a major QTL associated with features of NIDDM that was common to both crosses. We also mapped two additional significant loci, on Chrs 7 and 14, in the (OLETF × F344)F2 cross alone, and designated these three loci as Diabetes mellitus, OLETF type Dmo 1, Dmo2 and Dmo3 respectively. With regard to suggestive QTLs, we found loci on Chrs 10, 11, and 16 that were common to both crosses, as well as loci on Chrs 5 and 12 in the (OLETF × F344)F2 cross and on Chrs 4 and 13 in the (OLETF × BN)F2 cross. Our results showed that NIDDM in the OLETF rat is polygenic and demonstrated that different genetic backgrounds could affect ``fitness' for QTLs and produce different phenotypic effects from the same locus. Received: 9 October 1997 / Accepted: 29 January 1998  相似文献   

12.
HMG-17 is an abundant, nonhistone chromosomal protein that binds preferentially to nucleosomal core particles of mammalian chromatin. The human gene for HMG-17 has been localized to Chromosome (Chr) 1p, but the murine gene has not been previously mapped. Here we identify the murine functional gene, Hmg17, from among more than 25 related sequences (probably processed pseudogenes) and show that it is located on mouse Chr 4, in a region known to have conserved linkage relationships with human Chr 1p. We also report the map locations of 20 additional Hmg17-related sequences on mouse Chrs 1, 2, 3, 5, 7, 8, 9, 13, 15, 16, 17, 18, and X. The multiple, dispersed members of the Hmg17 multigene family can be detected efficiently with a single cDNA probe and provide useful markers for genetic mapping studies in mice.  相似文献   

13.
A dominant induced mutation in the mouse, tightly associated with a reciprocal chromosomal translocation between Chrs 4 and 17, causes abnormal head tossing and circling behavior (the translocation induced circling mutation, Tim). Affected mice develop an unusual anterior subcapsular cataract that appears after birth and is progressive. The most likely explanation for the phenotypic observations is that the translocation breakpoint disrupted a gene or its regulation. Although the Mos protooncogene is located close to the translocation breakpoint and transgenic mice that overexpress Mos demonstrate cataracts and circling behavior, there were no gross changes in the Mos gene or in its level of expression. The morphological changes observed in the lens resemble those seen in some human congenital cataract syndromes. Received: 31 July 1998 / Accepted: 14 October 1998  相似文献   

14.
The LEC rat has been reported to exhibit X-ray hypersensitivity and deficiency in DNA double-strand break (DSB) repair. The present study was performed to map the locus responsible for this phenotype, the xhs (X-ray hypersensitivity), as the first step in identifying the responsible gene. Analysis of the progeny of (BN × LEC)F1× LEC backcrosses indicated that the X-ray hypersensitive phenotype was controlled by multiple genetic loci in contrast to the results reported previously. Quantitative trait loci (QTL) linkage analysis revealed two responsible loci located on Chromosomes (Chr) 4 and 1. QTL on Chr 4 exhibited very strong linkage to the X-ray hypersensitive phenotype, while QTL on Chr 1 showed weak linkage. The Rad52 locus, mutation of which results in hypersensitivity to ionizing radiation and impairment of DNA DSB repair in yeast, was reported to be located on the synteneic regions of mouse Chr 6 and human Chr 12. However, mapping of the rat Rad52 locus indicated that it was located 23 cM distal to the QTL on Chr 4. Furthermore, none of the radio-sensitivity-related loci mapped previously in the rat chromosome were identical to the QTL on Chrs 4 and 1 in the LEC rat. Thus, it seems that X-ray hypersensitivity in the LEC rat is caused by mutation(s) in as-yet-undefined genes. Received: 14 February 2000 / Accepted: 17 May 2000  相似文献   

15.
Proximal mouse Chromosome (Chr) 16 shows conserved synteny with human Chrs 16, 8, 22, and 3. The mouse Chr 16/human Chr 22 conserved synteny region includes the DiGeorge/Velocardiofacial syndrome region of human Chr 22q11.2. A physical map of the entire mouse Chr 16/human Chr 22 region of conserved synteny has been constructed to provide a substrate for gene discovery, genomic sequencing, and animal model development. A YAC contig was constructed that extends ca. 5.4 Mb from a region of conserved synteny with human Chr 8 at Prkdc through the region conserved with human Chr 3 at DVL3. Sixty-one markers including 37 genes are mapped with average marker spacing of 90 kb. Physical distance was determined across the 2.6-Mb region from D16Mit74 to Hira with YAC fragmentation. The central region from D16Jhu28 to Igl-C1 was converted into BAC and PAC clones, further refining the physical map and providing sequence-ready template. The gene content and borders of three blocks of conserved linkage between human Chr 22q11.2 mouse Chr 16 are refined. Received: 4 November 1998 / Accepted: 21 December 1998  相似文献   

16.
By means of somatic cell, hybrids segregating rat chromosomes, we determined the chromosome localization of three rat 1 family integrin genes. ITGB1 was assigned to Chromosome (Chr) 19, ITGA4 to Chr 3, and ITGA5 to Chr 7. These chromosome assignments reveal or confirm homology between two pairs of rat and human chromosomes (rat Chr 3-human Chr 2; rat Chr 7-human Chr 12).  相似文献   

17.
KK mouse is known as a polygenic model for non-insulin-dependent diabetes mellitus with moderate obesity. To identify the quantitative trait loci (QTLs) responsible for the body weight in KK, linkage analysis with 97 microsatellite markers was carried out into 192 F2 progeny, comprising 93 mice with a/a genotype at agouti locus and 99 mice with A y /a genotype, of a cross between C57BL/6J female and KK-Ay (Ay congenic) male, thereby the influence of A y allele on the quantitative regulation of body weight was also examined. In F2 a/a mice, we identified a QTL on Chromosome (Chr) 4, and two loci with suggestive linkage on Chrs 15 and 18. In F2 A y /a mice, a QTL was identified on Chr 6, and two loci with suggestive linkage were identified on Chrs 4 and 16. That the QTL on Chr 4 was held in common between F2 a/a and F2 A y /a progenies implies that this locus may be a primary component regulating body weight in KK and KK-Ay. These results suggest that the body weight in KK is controlled by multiple genes, and the different combination of loci is involved in the presence of A y allele. The QTL on Chr 6 seemed to determine the body weight by controlling fat deposition, because the linkage was identified on body weight and adiposity, and is suggested to be a component involved in the metabolic pathway in obesity caused by the A y allele. Received: 16 December 1997 / Accepted: 16 March 1998  相似文献   

18.
The location of thereeler (rl) locus in mice in the paracentromeric part of chromosome (Chr) 5, proximal to theT(5;12)31H translocation breakpoint, has been confirmed. Analysis of DNA from animals with different doses of the proximal part of Chr 5 and from congenic mice showed that thePgy-1 locus is the closest marker torl, whereasEn-2 is located farther, distal to theT31H breakpoint. Together with recently published evidence (Martin et al. 1989), our data suggest the following order:Cen-rl/Pgy-1-T31H-En-2.  相似文献   

19.
Expression of a transgene is rarely analysed in the androgenetic progenies of the transgenic plants. Here, we report differential transgene expression in androgenetic haploid and doubled haploid (DH) tobacco plants as compared to the diploid parental lines, thus demonstrating a gene dosage effect. Using Agrobacterium-mediated transformation, and bacterial reporter genes encoding neomycin phosphotransferase (nptII) and β-glucuronidase (uidA/ GUS), driven respectively by the mas 1′ and mas 2′ promoters, we have generated more than 150 independent transgenic (R0) Nicotiana tabacum plants containing one or more T-DNA copies. Transgene analyses of these R0, their selfed R1 lines and their corresponding haploid progenies showed an obvious position effect (site of T-DNA insertion on chromosome) on uidA expression. However, transgene (GUS) expression levels were not proportional to transgene copy number. More than 150 haploids and doubled haploids, induced by treatment with colchicine, were produced from 20 independent transgenic R0 plants containing single and multiple copies of the uidA gene. We observed that homozygous DH plants expressed GUS at approximately 2.9-fold the level of the corresponding parental haploid plants. This increase in transgene expression may be attributed mainly to the increase (2-fold) in chromosome number. Based on this observation, we suggest a strong link between chromosome number (ploidy dosage effect) and transgene expression. In particular, we demonstrate the effect on its expression level of converting the transgene from the heterozygous (in R0 plants) to the homozygous (DH) state: e.g. an increase of 50% was observed in the homozygous DH as compared to the original heterozygous diploid plants. We propose that ploidy coupled with homozygosity can result in a new type of gene activation, creating differences in gene expression patterns. Received: 27 April 1998 / Accepted: 12 August 1998  相似文献   

20.
The four Shaker-like subfamilies of Shaker-, Shab-,Shaw-, and Shal-related K+ channels in mammals have been defined on the basis of their sequence homologies to the corresponding Drosophila genes. Using interspecific backcrosses between Mus musculus and Mus spretus, we have chromosomally mapped in the mouse the Shaker-related K+-channel genes Kcna1, Kcna2, Kcna4, Kcna5, and Kcna6; the Shab-related gene Kcnb1; the Shaw-related gene Kcnc4; and the Shal-related gene Kcnd2. The following localizations were determined: Chr 2, cen-Acra-Kcna4-Pax-6-a-Pck-1-Kras-3-Kcnb1 (corresponding human Chrs 11p and 20q, respectively); Chr 3, cen-Hao-2-(Kcna2, Kcnc4)-Amy-1 (human Chr 1); and Chr 6, cen-Cola-2-Met-Kcnd2-Cpa-Tcrb-adr/Clc-1-Hox-1.1-Myk-103-Raf-1-(Tpi-1, Kcna1, Kcna5, Kcna6) (human Chrs 7q and 12p, respectively). Thus, there is a cluster of at least three Shaker-related K+-channel genes on distal mouse Chr 6 and a cluster on Chr 2 that at least consists of one Shaker-related and one Shaw-related gene. The three other K+-channel genes are not linked to each other. The map positions of the different types of K+-channel genes in the mouse are discussed in relation to those of their homologs in man and to hereditary diseases of mouse and man that might involve K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号