首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor tyrosine kinase HER2 is associated with a number of human malignancies and is an important therapeutic target. The antibody‐drug conjugate trastuzumab emtansine (T‐DM1; Kadcyla®) is recommended as a first‐line treatment for patients with HER2‐positive metastatic breast cancer. T‐DM1 combines the antibody‐induced effects of the anti‐HER2 antibody trastuzumab (Herceptin®) with the cytotoxic effect of the tubulin inhibitor mertansine (DM1). For DM1 to have effect, the T‐DM1‐HER2 complex has to be internalized and the trastuzumab part of T‐DM1 has to be degraded. HER2 is, however, considered endocytosis‐resistant. As a result of this, trastuzumab is only internalized to a highly limited extent, and if internalized, it is rapidly recycled. The exact reasons for the endocytosis resistance of HER2 are not clear, but it is stabilized by heat‐shock protein 90 (Hsp90) and Hsp90 inhibitors induce internalization and degradation of HER2. HER2 can also be internalized upon activation of protein kinase C, and contrary to trastuzumab alone, the combination of two or more anti‐HER2 antibodies can induce efficient internalization and degradation of HER2. With intention to find ways to improve the action of T‐DM1, we investigated how different ways of inducing HER2 internalization leads to degradation of trastuzumab. The results show that although both Hsp90 inhibition and activation of protein kinase C induce internalization of trastuzumab, only Hsp90 inhibition induces degradation. Furthermore, we find that antibody internalization and degradation are increased when trastuzumab is combined with the clinically approved anti‐HER2 antibody pertuzumab (Perjeta®).  相似文献   

2.
《MABS-AUSTIN》2013,5(5):1211-1219
The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2.  相似文献   

3.
The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2.  相似文献   

4.
Gong C  Yao Y  Wang Y  Liu B  Wu W  Chen J  Su F  Yao H  Song E 《The Journal of biological chemistry》2011,286(21):19127-19137
Trastuzumab resistance emerges to be a major issue in anti-human epidermal growth factor receptor 2 (HER2) therapy for breast cancers. Here, we demonstrated that miR-21 expression was up-regulated and its function was elevated in HER2(+) BT474, SKBR3, and MDA-MB-453 breast cancer cells that are induced to acquire trastuzumab resistance by long-term exposure to the antibody, whereas protein expression of the PTEN gene, a miR-21 target, was reduced. Blocking the action of miR-21 with antisense oligonucleotides re-sensitized the resistant cells to the therapeutic activities of trastuzumab by inducing growth arrest, proliferation inhibition, and G(1)-S cell cycle checking in the presence of the antibody. Ectopic expression of miR-21 in HER2(+) breast cancer cells confers resistance to trastuzumab. Rescuing PTEN expression with a p3XFLAG-PTEN-mut construct with deleted miR-21 targeting sequence at its 3' UTR restored the growth inhibition of trastuzumab in the resistant cells by inducing PTEN activation and AKT inhibition. In vivo, administering miR-21 antisense oligonucleotides restored trastuzumab sensitivity in the resistant breast cancer xenografts by inducing PTEN expression, whereas injection of miR-21 mimics conferred trastuzumab resistant in the sensitive breast tumors via PTEN silence. Up-regulatin of miR-21 in tumor biopsies obtained from patients receiving pre-operative trastuzumab therapy was associated with poor trastuzumab response. Therefore, miR-21 overexpression contributes to trastuzumab resistance in HER2(+) breast cancers and antagonizing miR-21 demonstrates therapeutic potential by sensitizing the malignancy to anti-HER2 treatment.  相似文献   

5.
HER2-overexpressing breast cancers are characterized by frequent distant metastasis and often develop resistance after short-term effective treatment with the monoclonal antibody drug, trastuzumab. Here, we found that the oncogenic miRNA, miR-221, inhibited apoptosis, induced trastuzumab resistance and promoted metastasis of HER2-positive breast cancers. The tumor suppressor PTEN was identified as a miR-221 target; overexpression of PTEN abrogated the aforementioned miR-221-induced malignant phenotypes of the cells. These findings indicate that miR-221 may promote trastuzumab resistance and metastasis of HER2-positive breast cancers by targeting PTEN, suggesting its role as a potential biomarker for progression and poor prognosis, and as a novel target for trastuzumab-combined treatment of breast cancers. [BMB Reports 2014; 47(5): 268-273].  相似文献   

6.
Previous studies have demonstrated that Artemin (ARTN) functions as a cancer stem cell (CSC) and metastatic factor in mammary carcinoma. Herein, we report that ARTN mediates acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells. Ligands that increase HER2 activity increased ARTN expression in HER2-positive mammary carcinoma cells, whereas trastuzumab inhibited ARTN expression. Forced expression of ARTN decreased the sensitivity of HER2-positive mammary carcinoma cells to trastuzumab both in vitro and in vivo. Conversely, siRNA-mediated depletion of ARTN enhanced trastuzumab efficacy. Cells with acquired resistance to trastuzumab exhibited increased ARTN expression, the depletion of which restored trastuzumab sensitivity. Trastuzumab resistance produced an increased CSC population concomitant with enhanced mammospheric growth. ARTN mediated the enhancement of the CSC population by increased BCL-2 expression, and the CSC population in trastuzumab-resistant cells was abrogated upon inhibition of BCL-2. Hence, we conclude that ARTN is one mediator of acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells.  相似文献   

7.
This is a preliminary cross multidisciplinary theoretical-computational approach for the design of a drug delivery system based on immunoconjugated carbon nanotube against HER2- overexpressing cancer cells. This drug delivery system allows the release of an encapsulated cytotoxic cocktail in a controlled manner under pulsed radio frequency (RF) irradiation. Our effort is focused on the computational aided design of a high affinity bispecific anti-HER2 antibody and an opening mechanism of the carbon nanotube (CNT) based cytotoxic carrier for controlling multiple drug release. We study the main interactions between the antibody and the antigen by a computational scanning mutagenesis approach of trastuzumab and pertuzumab fragment antigen binding (Fab) structures in order to enhance their binding affinity. Then, each Fab fragments is joined by a polypeptide linker which should be stable enough to avoid the “open form” of antibody. On the other hand, we also conjugate the engineered antibody to functionalized CNTs (f-CNTs), which encapsulate the inhibitors of the HER2/PI3K/Akt/mTOR signaling pathway. We take advantage of the fact that f-CNT converts the RF radiation absorption into heat release. A pulsed laser at 13.45 MHz increments the temperature around 40 °C for triggering the nano-caps destabilization, which allows the switching of the opening mechanism of the drug carrier. Nano-caps will be a dual pH/temperature responsive in order to take advantage of lysosome characteristic (acidic pH) and heat release from the carrier. Nano-caps are functionalized with organic amide moieties, which hydrolyze quickly at an acidic pH into primary amines, and protonated amines generate repulsion interactions with other charged species, which trigger the cytotoxics release.
Figure
Immunoconjugated-CNT drug delivery against HER2 receptor. (1) Design of a high affinity bispecific anti-HER2 antibody based on trastuzumab and pertuzumab Fabs; and (2) controllable multiple drug release of the CNT carrier (opening mechanism) under external stimuli  相似文献   

8.
Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab, the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL6 than parental cells. An IL6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance.  相似文献   

9.
The antibody trastuzumab (Herceptin) has substantially improved overall survival for patients with aggressive HER2-positive breast cancer. However, about 70% of all treated patients will experience relapse or disease progression. This may be related to an insufficient targeting of the CD44highCD24low breast cancer stem cell subset, which is not only highly resistant to chemotherapy and radiotherapy but also a poor target for trastuzumab due to low HER2 surface expression. Hence, we explored whether the new antibody-drug conjugate T-DM1, which consists of the potent chemotherapeutic DM1 coupled to trastuzumab, could improve the targeting of these tumor-initiating or metastasis-initiating cells. To this aim, primary HER2-overexpressing tumor cells as well as HER2-positive and HER2-negative breast cancer cell lines were treated with T-DM1, and effects on survival, colony formation, gene and protein expression as well as antibody internalization were assessed. This revealed that CD44highCD24lowHER2low stem cell-like breast cancer cells show high endocytic activity and are thus particularly sensitive towards the antibody-drug conjugate T-DM1. Consequently, preexisting CD44highCD24low cancer stem cells were depleted by concentrations of T-DM1 that did not affect the bulk of the tumor cells. Likewise, colony formation was efficiently suppressed. Moreover, when tumor cells were cocultured with natural killer cells, antibody-dependent cell-mediated cytotoxicity was enhanced, and EMT-mediated induction of stem cell-like properties was prevented in differentiated tumor cells. Thus our study reveals an unanticipated targeting of stem cell-like breast cancer cells by T-DM1 that may contribute to the clinical efficacy of this recently approved antibody-drug conjugate.  相似文献   

10.
Trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER2 oncoprotein, can effectively target HER2-positive breast cancer through several mechanisms. Although the effects of trastuzumab on cancer cell proliferation, angiogenesis and apoptosis have been investigated in depth, the effect of trastuzumab on microRNA (miRNA) has not been extensively studied. We have performed miRNA microarray profiling before and after trastuzumab treatment in SKBr3 and BT474 human breast cancer cells that overexpress HER2. We found that trastuzumab treatment of SKBr3 cells significantly decreased five miRNAs and increased three others, whereas treatment of BT474 cells significantly decreased two miRNAs and increased nine. The only change in miRNA expression observed in both cell lines following trastuzumab treatment was upregulation of miRNA-194 (miR-194) that was further validated in vitro and in vivo. Forced expression of miR-194 in breast cancer cells that overexpress HER2 produced no effect on apoptosis, modest inhibition of proliferation, significant inhibition of cell migration/invasion in vitro and significant inhibition of xenograft growth in vivo. Conversely, knockdown of miR-194 promoted cell migration. Increased miR-194 expression markedly reduced levels of the cytoskeletal protein talin2 and specifically inhibited luciferase reporter activity of a talin2 wild-type 3'-untranslated region, but not that of a mutant reporter, indicating that talin2 is a direct downstream target of miR-194. Trastuzumab treatment inhibited breast cancer cell migration and reduced talin2 expression in vitro and in vivo. Knockdown of talin2 inhibited cell migration/invasion. Knockdown of trastuzumab-induced miR-194 expression with a miR-194 inhibitor compromised trastuzumab-inhibited cell migration in HER2-overexpressing breast cancer cells. Consequently, trastuzumab treatment upregulates miR-194 expression and may exert its cell migration-inhibitory effect through miR-194-mediated downregulation of cytoskeleton protein talin2 in HER2-overexpressing human breast cancer cells.  相似文献   

11.
High rates of inherent primary resistance to the humanized monoclonal antibody trastuzumab (Herceptin) are frequent among HER2 gene-amplified breast carcinomas in both metastatic and adjuvant settings. The clinical efficacy of trastuzumab is highly correlated with its ability to specifically and efficiently target HER2-driven populations of breast cancer stem cells (CSCs). Intriguingly, many of the possible mechanisms by which cancer cells escape trastuzumab involve many of the same biomarkers that have been implicated in the biology of CS-like tumor-initiating cells. In the traditional, one-way hierarchy of CSCs in which all cancer cells descend from special self-renewing CSCs, HER2-positive CSCs can occur solely by self-renewal. Therefore, by targeting CSC self-renewal and resistance, trastuzumab is expected to induce tumor shrinkage and further reduce breast cancer recurrence rates when used alongside traditional therapies. In a new, alternate model, more differentiated non-stem cancer cells can revert to trastuzumab-refractory, CS-like cells via the activation of intrinsic or microenvironmental paths-to-stemness, such as the epithelial-to-mesenchymal transition (EMT). Alternatively, stochastic transitions of trastuzumab-responsive CSCs might also give rise to non-CSC cellular states that lack major attributes of CSCs and, therefore, can remain “hidden” from trastuzumab activity. Here, we hypothesize that a better understanding of the CSC/non-CSC social structure within HER2-overexpressing breast carcinomas is critical for trastuzumab-based treatment decisions in the clinic. First, we decipher the biological significance of CSC features and the EMT on the molecular effects and efficacy of trastuzumab in HER2-positive breast cancer cells. Second, we reinterpret the genetic heterogeneity that differentiates trastuzumab-responders from non-responders in terms of CSC cellular states. Finally, we propose that novel predictive approaches aimed at better forecasting early tumor responses to trastuzumab should identify biological determinants that causally underlie the intrinsic flexibility of HER2-positive CSCs to “enter” into or “exit” from trastuzumab-sensitive states. An accurate integration of CSC cellular states and EMT-related biomarkers with the currently available breast cancer molecular taxonomy may significantly improve our ability to make a priori decisions about whether patients belonging to HER2 subtypes differentially enriched with a “mesenchymal transition signature” (e.g., luminal/HER2 vs. basal/HER2) would distinctly benefit from trastuzumab-based therapy ab initio.  相似文献   

12.
Specific targeting of tumor cells to achieve higher drug levels in tumor tissue and to overcome cardiotoxic and other secondary effects is the major goal in cancer therapy. With trastuzumab as a humanized monoclonal antibody binding, the HER2 receptor specific targeting is possible. In the present study, target-oriented nanoparticles based on biodegradable human serum albumin (HSA) loaded with cytostatic drug doxorubicin were developed. The surface of the nanoparticles was modified by covalent attachment of trastuzumab. HER2 overexpressing breast cancer cells showed a good cellular binding and uptake of these nanoparticles. The specific transport of the cytostatic drug doxorubicin with this nanoparticulate formulation into the HER2 overexpressing breast cancer cells, their release, and biological activity was demonstrated. The results indicate that these cell-type specific drug-loaded nanoparticles could achieve an improvement in cancer therapy. To our knowledge, this is the first study demonstrating a specific trastuzumab-based targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded nanoparticles.  相似文献   

13.
Trastuzumab (Herceptin), a humanized IgG1 antibody raised against the human epidermal growth factor receptor 2 (HER2/neu), is the main antibody in clinical use against breast cancer. Pre-clinical evidence and clinical studies indicate that trastuzumab employs several anti-tumour mechanisms that most likely contribute to enhanced survival of patients with HER2/neu-positive breast carcinomas. New strategies are aimed at improving antibody-based therapeutics like trastuzumab, e.g. by enhancing antibody-mediated effector function mechanisms. Based on our previous findings that a chimaeric ovarian tumour antigen-specific IgE antibody showed greater efficacy in tumour cell killing, compared to the corresponding IgG1 antibody, we have produced an IgE homologue of trastuzumab. Trastuzumab IgE was engineered with the same light- and heavy-chain variable-regions as trastuzumab, but with an epsilon in place of the gamma-1 heavy-chain constant region. We describe the physical characterisation and ligand binding properties of the trastuzumab IgE and elucidate its potential anti-tumour activities in functional assays. Both trastuzumab and trastuzumab IgE can activate monocytic cells to kill tumour cells, but they operate by different mechanisms: trastuzumab functions in antibody-dependent cell-mediated phagocytosis (ADCP), whereas trastuzumab IgE functions in antibody-dependent cell-mediated cytotoxicity (ADCC). Trastuzumab IgE, incubated with mast cells and HER2/neu-expressing tumour cells, triggers mast cell degranulation, recruiting against cancer cells a potent immune response, characteristic of allergic reactions. Finally, in viability assays both antibodies mediate comparable levels of tumour cell growth arrest. These functional characteristics of trastuzumab IgE, some distinct from those of trastuzumab, indicate its potential to complement or improve upon the existing clinical benefits of trastuzumab.  相似文献   

14.
Toll-like receptors are potent activators of the innate immune system and generate signals leading to the initiation of the adaptive immune response that can be utilized for therapeutic purposes. We tested the hypothesis that combined treatment with a Toll-like receptor agonist and an antitumor monoclonal antibody is effective and induces host-protective antitumor immunity. C57BL/6 human mutated HER2 (hmHER2) transgenic mice that constitutively express kinase-deficient human HER2 under control of the CMV promoter were established. These mice demonstrate immunological tolerance to D5-HER2, a syngeneic human HER2-expressing melanoma cell line. This human HER2-tolerant model offers the potential to serve as a preclinical model to test both antibody therapy and the immunization potential of human HER2-targeted therapeutics. Here, we show that E6020, a Toll-like receptor-4 (TLR4) agonist effectively boosted the antitumor efficacy of the monoclonal antibody trastuzumab in immunodeficient C57BL/6 SCID mice as well as in C57BL/6 hmHER2 transgenic mice. E6020 and trastuzumab co-treatment resulted in significantly greater inhibition of tumor growth than was observed with either agent individually. Furthermore, mice treated with the combination of trastuzumab and the TLR4 agonist were protected against rechallenge with human HER2-transfected tumor cells in hmHER2 transgenic mouse strains. These findings suggest that combined treatment with trastuzumab and a TLR4 agonist not only promotes direct antitumor effects but also induces a host-protective human HER2-directed adaptive immune response, indicative of a memory response. These data provide an immunological rationale for testing TLR4 agonists in combination with antibody therapy in patients with cancer.  相似文献   

15.
《MABS-AUSTIN》2013,5(4):978-990
HER2, a ligand-free tyrosine kinase receptor of the HER family, is frequently overexpressed in breast cancer. The anti-HER2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer; however, resistance to trastuzumab is common. The development of monoclonal antibodies that have complementary mechanisms of action results in a more comprehensive blockade of ErbB2 signaling, especially HER2/HER3 signaling. Use of such antibodies may have clinical benefits if these antibodies can become widely accepted. Here, we describe a novel anti-HER2 antibody, hHERmAb-F0178C1, which was isolated from a screen of a phage display library. A step-by-step optimization method was employed to maximize the inhibitory effect of this anti-HER2 antibody. Crystallographic analysis was used to determine the three-dimensional structure to 3.5 Å resolution, confirming that the epitope of this antibody is in domain III of HER2. Moreover, this novel anti-HER2 antibody exhibits superior efficacy in blocking HER2/HER3 heterodimerization and signaling, and its use in combination with pertuzumab has a synergistic effect. Characterization of this antibody revealed the important role of a ligand binding site within domain III of HER2. The results of this study clearly indicate the unique potential of hHERmAb-F0178C1, and its complementary inhibition effect on HER2/HER3 signaling warrants its consideration as a promising clinical treatment.  相似文献   

16.
HER2, a ligand-free tyrosine kinase receptor of the HER family, is frequently overexpressed in breast cancer. The anti-HER2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer; however, resistance to trastuzumab is common. The development of monoclonal antibodies that have complementary mechanisms of action results in a more comprehensive blockade of ErbB2 signaling, especially HER2/HER3 signaling. Use of such antibodies may have clinical benefits if these antibodies can become widely accepted. Here, we describe a novel anti-HER2 antibody, hHERmAb-F0178C1, which was isolated from a screen of a phage display library. A step-by-step optimization method was employed to maximize the inhibitory effect of this anti-HER2 antibody. Crystallographic analysis was used to determine the three-dimensional structure to 3.5 Å resolution, confirming that the epitope of this antibody is in domain III of HER2. Moreover, this novel anti-HER2 antibody exhibits superior efficacy in blocking HER2/HER3 heterodimerization and signaling, and its use in combination with pertuzumab has a synergistic effect. Characterization of this antibody revealed the important role of a ligand binding site within domain III of HER2. The results of this study clearly indicate the unique potential of hHERmAb-F0178C1, and its complementary inhibition effect on HER2/HER3 signaling warrants its consideration as a promising clinical treatment.  相似文献   

17.
Screen-printed platinum electrodes as transducer and magnetic beads as solid phase were combined to develop a particle-based electrochemical immunosensor for monitoring the serious food allergen ovalbumin. The standard arrangement of enzyme-linked immunosorbent assay became the basis for designing the immunosensor. A sandwich-type immunocomplex was formed between magnetic particles functionalized with specific anti-ovalbumin immunoglobulin G and captured ovalbumin molecules, and secondary anti-ovalbumin antibodies conjugated with the enzyme horseradish peroxidase were subsequently added as label tag. The electrochemical signal proportional to the enzymatic reaction of horseradish peroxidase during the reduction of hydrogen peroxide with thionine as electron mediator was measured by linear sweep voltammetry. The newly established method of ovalbumin detection exhibits high sensitivity suitable for quantification in the range of 11 to 222 nM and a detection limit of 5 nM. Magnetic beads-based assay format using external magnets for rapid and simple separation has been proven to be an excellent basis for electrochemical detection and quantification of food allergens in highly complex sample matrices.  相似文献   

18.
The structure of the Fab region of antibodies is critical to their function. By introducing single cysteine substitutions into various positions of the heavy and light chains of the Fab region of trastuzumab, a potent antagonist of HER2, and using thiol chemistry to link the different Fabs together, we produced a variety of monospecific F(ab′)2-like molecules with activities spanning from activation to inhibition of breast tumor cell growth. These isomers (or bis-Fabs) of trastuzumab, with varying relative spatial arrangements between the Fv-regions, were able to either promote or inhibit cell-signaling activities through the PI3K/AKT and MAPK pathways. A quantitative phosphorylation mapping of HER2 indicated that the agonistic isomers produced a distinct phosphorylation pattern associated with activation. This study suggests that antibody geometric isomers, found both in nature and during synthetic antibody development, can have profoundly different biological activities independent of their affinities for their target molecules.  相似文献   

19.
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) comprises around 20–30% of all BC subtypes and is correlated with poor prognosis. For many years, trastuzumab, a monoclonal antibody, has been used to inhibit the HER2 activity. Though, the main resistance to trastuzumab has challenged the use of this drug in the management of HER2-positive BC. Therefore, the determination of resistance mechanisms and the incorporation of new agents may lead to the development of a better blockade of the HER family receptor signaling. During the last few years, some therapeutic drugs have been developed for treating patients with trastuzumab-resistant HER2-positive BC that have more effective influences in the management of this condition. In this regard, the present study aimed at reviewing the mechanisms of trastuzumab resistance and the innovative therapies that have been investigated in trastuzumab-resistant HER2-positive BC subjects.  相似文献   

20.
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24? phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24? phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号