首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human placental anticoagulant protein-I (PAP-I) is a member of the lipocortin/calpactin/annexin family of Ca2+-dependent phospholipid binding proteins. PAP-I was labeled with fluorescein 5-isothiocyanate (1 mol/mol); this derivative had anticoagulant activity identical to the unlabeled protein and could be used to measure Ca2+-dependent binding to phospholipid vesicles through changes in fluorescence quenching. At 1.2 mM Ca2+, 0.50 M ionic strength, pH 7.4, 25 degrees C, fluorescein-labeled PAP-I bound to phospholipid vesicles containing 80% phosphatidylcholine, 20% phosphatidylserine with a Kd of 1.2 +/- 0.2 nM (mean +/- S.D.). At an ionic strength of 0.15 M, the Kd decreased to less than 0.1 nM. Prothrombin and factor Xa both competed with fluorescein-labeled PAP-I for binding to anionic phospholipid vesicles, but with affinities at least 1000-fold weaker than PAP-I. PAP-I bound only weakly (Kd greater than 2 x 10(-5) M) to neutral or anionic phospholipid monomers, and this binding was not calcium-dependent. These results show that the affinity of PAP-I for anionic phospholipid surfaces is sufficient to explain its potency as an in vitro anticoagulant.  相似文献   

2.
Previously we isolated and characterized a placental anticoagulant protein (PAP or PAP-I), which is a Ca2+-dependent phospholipid binding protein [Funakoshi et al. (1987) Biochemistry 26, 5572] and a member of the lipocortin family [Funakoshi et al. (1987) Biochemistry 26, 8087]. In this study, three additional anticoagulant proteins (PAP-II, PAP-III, and PAP-IV) were simultaneously isolated from human placental homogenates prepared in the presence of 5 mM ethylenediaminetetraacetic acid. The isoelectric points of PAP-I, PAP-II, PAP-III, and PAP-IV were 4.8, 6.1, 5.9, and 8.1, respectively, and their apparent molecular weights were 32,000, 33,000, 34,000, and 34,500, respectively. Amino acid sequences of cyanogen bromide fragments of these proteins showed that PAP-III was a previously unrecognized member of the lipocortin family, while PAP-II was probably the human homologue of porcine protein II and PAP-IV was a derivative of lipocortin II truncated near the amino terminus. Comparative studies showed that all four proteins inhibited blood clotting and phospholipase A2 activity with potencies consistent with their measured relative affinities for anionic phospholipid vesicles. However, PAP-IV bound to phospholipid vesicles approximately 160-fold more weakly than PAP-I, while PAP-II and PAP-III bound only 2-fold and 3-fold more weakly. These results increase to six the number of lipocortin-like proteins known to exist in human placenta. The observed differences in phospholipid binding may indicate functional differences among the members of the lipocortin family despite their considerable structural similarities.  相似文献   

3.
Placental anticoagulant protein (PAP) rapidly lost its anticoagulant effect due to photooxidation in the presence of methylene blue at pH 7.9 and 8 degrees C. Photooxidized PAP failed to bind the phospholipid vesicle. It seemed unlikely that the protein underwent a change in molecular size during the photooxidation on the basis of its behavior in electrophoresis and gel filtration. Photooxidized PAP had significantly decreased histidine contents, whereas the contents of other amino acids remained essentially unchanged. The peptide, SHLRKV, was included in the functional site of PAP and still showed an anticoagulant activity. On the other hand, the peptide which substituted histidine by alanine, SALRKV, no longer showed the activity. It was shown that the histidine residue is involved in Ca2+ or the phospholipid binding site of the protein.  相似文献   

4.
The thrombin mutant W215A/E217A features a drastically impaired catalytic activity toward chromogenic and natural substrates but efficiently activates the anticoagulant protein C in the presence of thrombomodulin. As the remarkable anticoagulant properties of this mutant continue to be unraveled in preclinical studies, we solved the x-ray crystal structures of its free form and its complex with the active site inhibitor H-d-Phe-Pro-Arg-CH(2)Cl (PPACK). The PPACK-bound structure of W215A/E217A is identical to the structure of the PPACK-bound slow form of thrombin. On the other hand, the structure of the free form reveals a collapse of the 215-217 strand that crushes the primary specificity pocket. The collapse results from abrogation of the stacking interaction between Phe-227 and Trp-215 and the polar interactions of Glu-217 with Thr-172 and Lys-224. Other notable changes are a rotation of the carboxylate group of Asp-189, breakage of the H-bond between the catalytic residues Ser-195 and His-57, breakage of the ion pair between Asp-222 and Arg-187, and significant disorder in the 186- and 220-loops that define the Na(+) site. These findings explain the impaired catalytic activity of W215A/E217A and demonstrate that the analysis of the molecular basis of substrate recognition by thrombin and other proteases requires crystallization of both the free and bound forms of the enzyme.  相似文献   

5.
Rabbit thrombomodulin displays three distinct blood anticoagulant activities: it promotes the activation of protein C by thrombin (protein C activation cofactor activity); it promotes the inactivation of thrombin by thrombin (direct anticoagulant activity). The effects on these activities of mouse anti-thrombomodulin monoclonal antibodies and of the heparin-neutralizing proteins, platelet factor 4, histidine-rich glycoprotein, and S-protein, were investigated. One of the antibodies, which did not influence the functional properties of thrombomodulin, was used as an immunoaffinity ligand for purification of the protein. Two other antibodies, which were found to abrogate the protein C activation cofactor activity of the purified thrombomodulin, also abolished the antithrombin-dependent and the direct anticoagulant activities. The heparin-neutralizing proteins all inhibited the two latter activities, albeit to a varying extent, but did not appreciably affect the activation of protein C. These results are interpreted in relation to our previous finding that rabbit thrombomodulin contains an acidic domain, tentatively identified as a sulfated glycosaminoglycan (Bourin, M.-C., Boffa, M.-C., Bj?rk, I., and Lindahl, U. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5924-5928). It is proposed that the acidic domain interacts with thrombin at the protein C activation site and that this interaction is a prerequisite to the expression of direct as well as antithrombin-dependent anticoagulant activity. The interaction is not essential to, but compatible with, the activation of protein C. Experiments involving treatment of thrombomodulin with various glycanases or with nitrous acid, followed by measurement of anticoagulant activities, indicated that the acidic domain is constituted by a sulfated galactosaminoglycan and not by a heparin-related polysaccharide as previously suggested.  相似文献   

6.
The human plasma serine protease, activated protein C (APC), primarily exerts its anticoagulant function by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. A recombinant active site Ser 360 to Ala mutation of protein C was prepared, and the mutant protein was expressed in human 293 kidney cells and purified. The activation peptide of the mutant protein C zymogen was cleaved by a snake venom activator, Protac C, but the "activated" S360A APC did not have amidolytic activity. However, it did exhibit significant anticoagulant activity both in clotting assays and in a purified protein assay system that measured prothrombinase activity. The S360A APC was compared to plasma-derived and wild-type recombinant APC. The anticoagulant activity of the mutant, but not native APC, was resistant to diisopropyl fluorophosphate, whereas all APCs were inhibited by monoclonal antibodies against APC. In contrast to native APC, S360A APC was not inactivated by serine protease inhibitors in plasma and did not bind to the highly reactive mutant protease inhibitor M358R alpha 1 antitrypsin. Since plasma serpins provide the major mechanism for inactivating APC in vivo, this suggests that S360A APC would have a long half-life in vivo, with potential therapeutic advantages. S360A APC rapidly inhibited factor Va in a nonenzymatic manner since it apparently did not proteolyze factor Va. These data suggest that native APC may exhibit rapid nonenzymatic anticoagulant activity followed by enzymatic irreversible proteolysis of factor Va. The results of clotting assays and prothrombinase assays showed that S360A APC could not inhibit the variant Gln 506-FVa compared with normal Arg 506-FVa, suggesting that the active site of S360A APC binds to FVa at or near Arg 506.  相似文献   

7.
Crystal structure of the anticoagulant slow form of thrombin   总被引:3,自引:0,他引:3  
Using the thrombin mutant R77aA devoid of the site of autoproteolytic degradation at exosite I, we have solved for the first time the structure of thrombin free of any inhibitors and effector molecules and stabilized in the Na(+)-free slow form. The slow form shows subtle differences compared with the currently available structures of the Na(+)-bound fast form that carry inhibitors at the active site or exosite I. The most notable differences are the displacement of Asp-189 in the S1 specificity pocket, a downward shift of the 190-193 strand, a rearrangement of the side chain of Glu-192, and a significant shift in the position of the catalytic Ser-195 that is no longer within H-bonding distance from His-57. The structure of the slow form explains the reduced specificity toward synthetic and natural substrates and suggests a molecular basis for its anticoagulant properties.  相似文献   

8.
Ammodytoxin A (AtxA) from the venom of Vipera ammodytes ammodytes belongs to group IIA secreted phospholipase A2 (sPLA2), for which the major pathologic activity is presynaptic neurotoxicity. We show here that this toxin also affects hemostasis because it exhibits strong anticoagulant activity. AtxA binds directly to human coagulation factor Xa (FXa) with Kdapp of 32 nM, thus inhibiting the activity of the prothrombinase complex with an IC50 of 20 nM. To map the FXa-interaction site on AtxA, various mutants of AtxA produced by site-directed mutagenesis and expressed in Escherichia coli were tested in the study. In surface plasmon resonance (SPR) measurements, with FXa covalently attached to the sensor chip, we show that the FXa-binding site on AtxA includes several basic amino acid residues at the C-terminal and beta-wing regions of the molecule. Applying an in vitro biological test for inhibition of prothrombinase activity, we further demonstrate that the same residues are also very important for the anticoagulant activity of AtxA. We conclude that the anticoagulant site of AtxA is located in the C-terminal and beta-wing regions of this phospholipase A2. Synthetic peptides comprising residues of the deduced anticoagulant site of AtxA provide a basis to synthesize novel anticoagulant drugs.  相似文献   

9.
An anticoagulant isolated from salivary gland extracts of the ixodid tick Rhipicephalus appendiculatus was purified by gel filtration on Sephadex G-100, ion exchange on DEAE-cellulose, aprotinin-Sepharose, and by high-pressure-liquid size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the anticoagulant activity was associated with a protein of an apparent Mr of 65 kDa. The purified molecule had a pI in the range of 8.0-8.5 on chromatofocusing and was stable over a wide pH range, but was heat labile and susceptible to inactivation by trypsin and reductive alkylation. The anticoagulant did not inhibit thrombin-initiated fibrin formation and had no detectable fibrino(geno)lytic or phospholipase-like activities. Although it inhibited factor Xa-induced clotting of bovine plasma, it did not affect the amidase activity of factor Xa toward a synthetic substrate, suggesting that the anticoagulant acts at a site distinct from the active site of factor Xa or on other components of the prothrombinase complex.  相似文献   

10.
Protein S is anticoagulant in the absence of activated protein C because of direct interactions with coagulation Factors Xa and Va. Synthetic peptides corresponding to amino acid sequences of protein S were tested for their ability to inhibit prothrombinase activity. The peptide containing the C-terminal sequence of protein S, residues 621-635 (PSP14), reversibly inhibited prothrombinase activity in the presence but not in the absence of Factor Va (K(i) approximately 2 microM). PSP14 inhibition of prothrombinase was independent of phospholipids but could be competitively overcome by increasing Factor Xa concentrations, suggesting that the C-terminal region of protein S may compete for a Factor Xa binding site on Factor Va. Studies using peptides with amino acid substitutions suggested that lysines 630, 631, and 633 were critical residues. PSP14 inhibited Factor Va activity in Factor Xa-one-stage clotting assays. PSP14 inhibited protein S binding to immobilized Factor Va. When preincubated with protein S, antibodies raised against PSP14 inhibited binding of protein S to Factor Va and blocked inhibition of prothrombinase activity by protein S. These results show that the C-terminal region of protein S containing residues 621-635 is essential for binding of protein S to Factor Va and that this interaction contributes to anticoagulant action.  相似文献   

11.
beta-diketone-cleaving enzyme Dke1 is a homotetrameric Fe2+-dependent dioxygenase from Acinetobacter johnsonii. The Dke1protomer adopts a single-domain beta-barrel fold characteristic of the cupin superfamily of proteins and features a mononuclear non-haem Fe2+ centre where a triad of histidine residues, His-62, His-64 and His-104, co-ordinate the catalytic metal. To provide structure-function relationships for the peculiar metal site of Dke1 in relation to the more widespread 2-His-1-Glu/Asp binding site for non-haem Fe2+,we replaced each histidine residue individually with glutamate and asparagine and compared binding of Fe2+ and four non-native catalytically inactive metals with purified apo-forms of wild-type and mutant enzymes. Results from anaerobic equilibrium microdialysis (Fe2+) and fluorescence titration (Fe2+, Cu2+, Ni2+, Mn2+ and Zn2+) experiments revealed the presence of two broadly specific metal-binding sites in native Dke1 that bind Fe2+ with a dissociation constant (Kd) of 5 microM (site I) and approximately 0.3 mM (site II). Each mutation, except for the substitution of asparagine for His-104, disrupted binding of Fe2+, but not that of the other bivalent metal ions, at site I,while leaving metal binding at site II largely unaffected. Dke1 mutants harbouring glutamate substitutions were completely inactive and not functionally complemented by external Fe2+.The Fe2+ catalytic centre activity (kcat) of mutants with asparagine substitution of His-62 and His-104 was decreased 140- and 220-fold respectively, compared with the kcat value of 8.5 s(-1) for the wild-type enzyme in the reaction with pentane-2,4-dione.The H64N mutant was not catalytically competent, except in the presence of external Fe2+ (1 mM) which elicited about 1/1000 of wild-type activity. Therefore co-ordination of Fe2+ by Dke1 requires an uncharged metallocentre, and three histidine ligands are needed for the assembly of a fully functional catalytic site. Oxidative inactivation of Dke1 was shown to involve conversion of enzyme-bound Fe2+ into Fe3+, which is then released from the metal centre.  相似文献   

12.
Tissue factor pathway inhibitor (TFPI) from different cell lines shows up to 15-fold differences in the ratio of anticoagulant to chromogenic activity. The anticoagulant activity was dependent on the purification procedure used and it was possible to isolate two fractions of recombinant TFPI. Only one of these fractions showed anticoagulant activity comparable with TFPI from normal human plasma, and Western blotting showed that the low-activity fraction did not react with an antibody raised against a peptide of TFPI located near the C-terminal. Analysis by mass spectroscopy of peptides from V8 protease digests showed that C-terminal amino acids could only be identified from the high-activity form, while heterologous fragmentation had taken place in the form with low anticoagulant activity. Previously published studies on TFPI have been performed using material of low anticoagulant activity compared with plasma TFPI, and we suggest that these studies have been performed with material degraded in the C-terminus.  相似文献   

13.
14.
Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals. It involves tightly controlled inflammation, proteolysis, and fibrin deposition. We hypothesized that ovarian heparan sulfates may modulate these processes through interactions with effector proteins. Our previous work has shown that anticoagulant heparan sulfates are synthesized by rodent ovarian granulosa cells, and we now have set out to characterize heparan sulfates from human follicular fluid. Here we report the first anticoagulant heparan sulfate purified from a natural human extravascular source. Heparan sulfate chains were fractionated according to their affinity for antithrombin, and their structure was analyzed by 1H NMR and MS/MS. We find that human follicular fluid is a rich source of anticoagulant heparan sulfate, comprising 50.4% of total heparan sulfate. These antithrombin-binding chains contain more than 6% 3-O-sulfated glucosamine residues, convey an anticoagulant activity of 2.5 IU/ml to human follicular fluid, and have an anti-Factor Xa specific activity of 167 IU/mg. The heparan sulfate chains that do not bind antithrombin surprisingly exhibit an extremely high content in 3-O-sulfated glucosamine residues, which suggest that they may exhibit biological activities through interactions with other proteins.  相似文献   

15.
Two monoclonal antibodies, beta 208 and beta 210, against the beta subunit of the F(1) ATPase from Escherichia coli reacted with an intact beta subunit and also a peptide corresponding to a portion of beta between residues 1 and 145. Mutations at Ala-1, Val-15, Glu-16, Phe-17, Leu-29, Gly-65, or Leu-66, and His-110 or Arg-111 for beta 210 and beta 208, respectively, caused decreased antibody binding to beta, suggesting that these residues form the epitopes and are thought to lie close together on the surface of the beta subunit. The topological locations of the corresponding residues in the atomic structure of the bovine beta subunit agree well with these expectations, except for Ala-1 and Leu-29. beta 210 binds to two beta strands including the epitope residues that are 50 residues apart, indicating that this antibody recognizes the tertiary structure of the N-terminal end region. Mutations in the epitope residues of beta 210 do not affect the F(1) ATPase activity, suggesting that surfaces of the two beta strands in the amino-terminal end region are not functionally essential. To analyze the functional importance around His-110 recognized by beta 208 we introduced site specific mutations at residues His-110 and Ile-109. Ile-109 to Ala or Arg, and His-110 to Ala or Asp caused defective assembly of F(1). However, the His-110 to Arg mutation had no effect on molecular assembly, suggesting that Ile-109 and His-110, especially the positive charge of His-110 are essential for the assembly of F(1). The His-110 to Arg mutation caused a large decrease in F(1)-ATPase activity, suggesting that a subtle change in the topological arrangement of the positive charge of His-110 located on the surface of beta plays an important role in the catalytic mechanism of the F(1)-ATPase.  相似文献   

16.
N-terminal signal sequences can direct nascent protein chains to the inner membrane of prokaryotes and the endoplasmic reticulum of eukaryotes by interacting with the signal recognition particle. In this study, we show that isolated peptides corresponding to several bacterial signal sequences inhibit the GTPase activity of the Escherichia coli signal recognition particle, as previously reported (Miller, J. D., Bernstein, H. D., and Walter, P. (1994) Nature 367, 657-659), but not by the direct mechanism proposed. Instead, isolated signal peptides bind nonspecifically to the RNA component and aggregate the entire signal recognition particle, leading to a loss of its intrinsic GTPase activity. Surprisingly, only "functional" peptide sequences aggregate RNA; the peptides in general use as "nonfunctional" negative controls (e.g. those with deletions or charged substitutions within the hydrophobic core), are sufficiently different in physical character that they do not aggregate RNA and thus have no effect on the GTPase activity of the signal recognition particle. We propose that the reported effect of functional signal peptides on the GTPase activity of the signal recognition particle is an artifact of the high peptide concentrations and low salt conditions used in these in vitro studies and that signal sequences at the N terminus of nascent chains in vivo do not exhibit this activity.  相似文献   

17.
Wang J  Rabenstein DL 《Biochemistry》2006,45(51):15740-15747
Two synthetic analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein (Ac-SRGKAKVKAKVKDQTK-NH2) and the all-d-amino acid version of the same peptide (l-HIPAP and d-HIPAP, respectively) were synthesized, and their efficacy as agents for neutralization of the anticoagulant activity of heparin was assayed. The two analogue peptides were found to be equally effective for neutralization of the anticoagulant activity of heparin, as measured by restoration of the activity of serine protease factor Xa by the Coatest heparin method. The finding that l-HIPAP and d-HIPAP are equally effective suggests that d-amino acid peptides show promise as proteolytically stable therapeutic agents for neutralization of the anticoagulant activity of heparin. The interaction of l-HIPAP and d-HIPAP with heparin was characterized by 1H NMR, isothermal titration calorimetry (ITC), and heparin affinity chromatography. The two peptides were found to interact identically with heparin. Analysis of the dependence of heparin-peptide binding constants on Na+ concentration by counterion condensation theory indicates that, on average, 2.35 Na+ ions are displaced from heparin per peptide molecule bound and one peptide molecule binds per hexasaccharide segment of heparin. The analysis also indicates that both ionic and nonionic interactions contribute to the binding constant, with the ionic contribution decreasing as the Na+ concentration increases.  相似文献   

18.
The intravenous or intraperitoneal injection of heparin fractions depleted of anticoagulant activity (HFDA) into mice, either at the time of immunization or challenge, inhibited hapten-specific delayed-type hypersensitivity (DTH) reactions. The loss was not due to functional elimination of sensitized lymphocytes, since mice sensitized with the contactant and then treated with HFDA retained their ability to transfer reactivity into normal syngeneic recipients. In contrast, lymphocytes from sensitized mice were unable to produce DTH reactivity in recipient mice pretreated with HFDA. The intravenous injection of HFDA resulted in a rapid, but transient increase in the number of circulating leukocytes. The intravenous injection of HFDA also reduced the footpad swelling that resulted from a local injection of concanavalin A. It is postulated that HFDA exercise their inhibitory effects on the DTH response by interfering with the migration of cells into the challenge site.  相似文献   

19.
Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of non-mammalian origin that exhibit biological activities in mammalian systems. Examples of these polysaccharides extracted from echinoderms have simple structures, composed of oligosaccharide repeating units within which the residues differ by specific patterns of sulfation among different species. In contrast the algal fucans may have some regular repeating structure but are clearly more heterogeneous when compared with the echinoderm fucans. The structures of the sulfated fucans from brown algae also vary from species to species. We compared the anticoagulant activity of the regular and repetitive fucans from echinoderms with that of the more heterogeneous fucans from three species of brown algae. Our results indicate that different structural features determine not only the anticoagulant potency of the sulfated fucans but also the mechanism by which they exert this activity. Thus, the branched fucans from brown algae are direct inhibitors of thrombin, whereas the linear fucans from echinoderms require the presence of antithrombin or heparin cofactor II for inhibition of thrombin, as reported for mammalian glycosaminoglycans. The linear sulfated fucans from echinoderms have an anticoagulant action resembling that of mammalian dermatan sulfate and a modest action through antithrombin. A single difference of one sulfate ester per tetrasaccharide repeating unit modifies the anticoagulant activity of the polysaccharide markedly. Possibly the spatial arrangements of sulfate esters in the repeating tetrasaccharide unit of the echinoderm fucan mimics the site in dermatan sulfate with high affinity for heparin cofactor II.  相似文献   

20.
Succinyl-CoA synthetase (EC 6.2.1.5, succinate: CoA ligase (ADP-forming)) of Escherichia coli is an α2β2 tetramer, with the active site believed to be located at the point of contact between the two subunit types. It has been previously established that the reaction involves the intermediate participation of a phosphorylated enzyme form in the process of catalysis. The site of phosphorylation (His-246) and the binding sites for the substrates ADP and ATP are located in the α subunit, and the succinate and CoA binding sites are in β. A mutant form of this enzyme, with the active site histidine residue replaced by aspartate, has been produced in large quantities and purified to homogeneity. This form appears to be indistinguishable from the native enzyme with respect to its subunit assembly, but has no ability to catalyze the overall reaction. As expected, the His-246 α →Asp mutant is incapable of undergoing phosphorylation. We have developed an assay based upon the arsenolysis of succinyl-CoA that effectively isolates the partial reaction that occurs in the portion of the active site contributed by the β subunit; this reaction does not involve covalent participation of His-246 α. We have found that the His-246 α →Asp mutant is also devoid of activity in this arsenolysis reaction, indicating that an intact His-246 α is required for the establishment of the microenvironment in this portion of the active site that is required for the corresponding step of the overall reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号