首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.  相似文献   

2.
The sympathetic nervous system modulates immune function at a number of levels. Within the epidermis, APCs (Langerhans cells (LC)) are frequently anatomically associated with peripheral nerves. Furthermore, some neuropeptides have been shown to regulate LC Ag-presenting function. We explored the expression of adrenergic receptors (AR) in murine LC and assessed their functional role on Ag presentation and modulation of cutaneous immune responses. Both purified LC and the LC-like cell lines XS52-4D and XS106 expressed mRNA for the ARs alpha(1A) and beta(2). XS106 cells and purified LC also expressed beta(1)-AR mRNA. Treatment of murine epidermal cell preparations with epinephrine (EPI) or norepinephrine inhibited Ag presentation in vitro. Furthermore, pretreatment of epidermal cells with EPI or norepinephrine in vitro suppressed the ability of these cells to present Ag for elicitation of delayed-type hypersensitivity in previously immunized mice. This effect was blocked by use of the beta(2)-adrenergic antagonist ICI 118,551 but not by the alpha-antagonist phentolamine. Local intradermal injection of EPI inhibited the induction of contact hypersensitivity to epicutaneously administered haptens. Surprisingly, injection of EPI at a distant site also suppressed induction of contact hypersensitivity. Thus, catecholamines may have both local and systemic effects. We conclude that specific ARs are expressed on LC and that signaling through these receptors can decrease epidermal immune reactions.  相似文献   

3.
Human epidermal cells (EC) act as stimulator cells in the mixed-skin cell lymphocyte culture reaction (MSLR). To analyze the role of human epidermal Langerhans cells (LC) and indeterminate cells (IC), which are the only cells expressing the DR-Ia-like antigens in normal epidermis, in the generation of alloreactive cytotoxic T lymphocytes (CTL) in cell-mediated cytolysis, 18-hr 51Cr-release assays against PBL targets (targets autologous to stimulator EC) were conducted after allogeneic human MSLR. MSLR and CTL assays were conducted with, as stimulator cells, suspensions of normal human EC as controls, and EC after: (1) preincubation with anti-HLA-DR or OKT6 (specific for LC in EC suspension) monoclonal antibodies; (2) panning, a monolayer technique used to deplete EC suspensions in OKT6 or DR-positive cells. The generation of alloreactive CTL was found to occur only after allogeneic MSLR and when targets and stimulator cells were from the same donor; it was reduced by EC incubation: cytotoxic activity 26.66 +/- 3.84 (controls); 8.8 +/- 3.6 and 7.7 +/- 3.7 (EC incubated with OKT6 or anti-DR, respectively); it was reduced or abolished when the EC used in MSLR were depleted in OKT6 or DR-positive cells by panning. These findings demonstrate that human LC and IC are necessary for an optimal in vitro sensitization in MSLR and the subsequent in vitro generation of alloreactive CTL in man.  相似文献   

4.
Interleukin 2 receptors on cultured murine epidermal Langerhans cells   总被引:2,自引:0,他引:2  
Rat monoclonal antibodies 3C7 and 7D4 detect two distinct functional regions of the murine interleukin 2 (IL 2) receptor. When studying the emergence kinetics of IL 2 receptors in mixed epidermal cell (EC)-lymphocyte cultures by using 3C7 and 7D4 in an indirect immunofluorescence assay, we regularly encountered a distinctive membrane fluorescence not only on lymphocytes, but also on a subpopulation of cells exhibiting a dendritic morphology. Reasoning that these 3C7/7D4-reactive dendritic cells might represent a subpopulation of epidermal dendritic cells, we studied mouse EC for the presence of 3C7/7D4- reactive cells. Although 3C7/7D4 reactivity was never detected on freshly isolated EC or on epidermal sheets, a small number of 3C7/7D4+ cells was encountered after 24 to 48 hr of culture. These cells exhibited a dendritic shape, expressed Ia antigens, lacked Thy-1 antigens, and displayed the ultrastructural features of Langerhans cells (LC) with the notable exception of Birbeck granules. Although after 24 hr, only 20% of Ia+ EC were 3C7/7D4+, the vast majority of LC displayed 3C7/7D4 binding sites after 4 to 5 days of culture. Preincubation of cultured LC-enriched EC with recombinant human IL 2 prevented subsequent 3C7-but not 7D4-binding to these cells. Western blot analysis of 7D4-reactive material of detergent extracts from LC-enriched EC revealed three bands in the same m.w. range as reported for CTLL cells. These results demonstrate that cultured LC express IL 2 receptors and may bear important implications for a better understanding of growth regulation, differentiation, and immunologic functions of LC.  相似文献   

5.
Circumstantial evidence suggests strongly that epidermal Langerhans cells (LC) alone among epidermal cells (EC) are responsible for generating an immunogenic signal for contact hypersensitivity (CH) after epicutaneous application of hapten. However, data obtained from previous studies performed with intact skin or isolated EC do not address the immunogenic capacity of a second dendritic, bone marrow-derived population of cells that resides within the epidermis, Thy-1+ epidermal cells. To identify the cellular source(s) of the antigenic signals emerging from the epidermis, purified preparations of LC, Thy-1+ cells, and keratinocytes were prepared from CBA/J mouse skin. Each cell type was derivatized in vitro with TNBS and inoculated via various routes into syngeneic mice that were assayed for the induction of CH and specific unresponsiveness. IA+ LC, when derivatized with hapten and inoculated into mice, induced CH without evidence of down-regulation regardless of the route of immunization. Derivatized Thy-1+ EC did not deliver a positive signal for CH. Rather, Thy-1+ EC possessed the capacity to initiate down-regulation of the CH response when they were delivered i.v. We conclude that all cellular elements necessary for the induction and regulation of CH after epicutaneous application of hapten to skin reside within the epidermis. The resident, dendritic, bone marrow-derived populations within the epidermis have the capacity to determine the outcome of an epicutaneous antigenic encounter.  相似文献   

6.
Flow cytometry was found to be a very appropriate tool for the study of Langerhans cells (LC), which represent a minor cell population (2-3%) of human epidermis, and allowed us to obtain new phenotypic, functional, and cell cycle data on these rare cells. The phenotypic analysis of cell surface antigens demonstrates the existence of two subpopulations of LC: the former is HLA-DR+ and OKT 6+ (about 90% of total HLA-DR+ cells) and the latter is HLA-DR+ and OKT 6- (about 10% of total HLA-DR+ cells). These subpopulations of LC are both able to stimulate the proliferation of peripheral blood lymphocytes (PBL) in the presence of keratinocytes i.e., in mixed skin lymphocyte reaction (MSLR). Analysis of the cell cycle could be performed on OKT 6+ LC. Results show that they can be found in the various phases of the cell cycle, suggesting that the large majority of Langerhans cells are able to proliferate in situ in normal human epidermis.  相似文献   

7.
Defective clearance of IgG-sensitized particles has been documented in systemic lupus erythematosus (SLE). This defect may be of pathogenetic significance because it allows the prolonged circulation of endogenous immune complexes with subsequent tissue deposition. To assess the possible contribution of a genetically determined defect in phagocyte Fc-IgG receptor expression or immune complex saturation of Fc-IgG receptors to impaired clearance, we used a well-characterized monomer binding assay to quantitate monocyte Fc-IgG receptors in normal controls and in 26 patients with SLE. Mean monocyte Fc-IgG receptor numbers were increased in both male and female SLE patients relative to normal controls. Increasing receptor numbers correlated positively with increasing clinical disease activity and increasing titers of antibody to native, double-stranded DNA. No significant correlation was found between any single disease symptom, organ system involvement, drug therapy, antigenic C3 levels, or immune complex levels and receptor number. A negative correlation was noted between Fc-IgG receptor binding affinity constants in SLE patients and clinical disease activity, but none of the observed affinity constants fell outside the 95% confidence normal range, and the mean affinity constants for patients both with and without active disease were not significantly different from controls. Our results are inconsistent with a genetically determined defect in Fc-IgG receptor elaboration by mononuclear phagocytes, and suggest that simple immune complex saturation does not underlie abnormal Fc-IgG-mediated clearance in SLE.  相似文献   

8.
Langerhans cells (LC) are the dendritic APC population of the epidermis, where they reside for long periods and are self-replicating. The molecular signals underlying these characteristics are unknown. The TNF superfamily member receptor activator of NF-kappaB ligand (RANKL, TNFSF11) has been shown to sustain viability of blood dendritic cells in addition to its role in promoting proliferation and differentiation of several cell types, notably osteoclasts. In this study, we have studied expression of the RANKL system in skin and have defined a key role for this molecule in LC homeostasis. In vitro and in vivo, human KC expressed RANKL and epidermal LC expressed cell surface RANK. In vitro, RANKL sustained CD34(+) progenitor-derived LC viability following 72-h cultures in cytokine-free medium (79.5 +/- 1% vs 55.2 +/- 5.7% live cells, respectively; n = 4; p < 0.05). In vivo, RANKL-deficient mice displayed a marked reduction in epidermal LC density (507.1 +/- 77.2 vs 873.6 +/- 41.6 LC per mm(2); n = 9; p < 0.05) and their proliferation was impaired without a detectable effect on apoptosis. These data indicate a key role for the RANKL system in the regulation of LC survival within the skin and suggest a regulatory role for KC in the maintenance of epidermal LC homeostasis.  相似文献   

9.
Fonsecaea pedrosoi is the major etiological agent of chromoblastomycosis, a chronic, suppurative, granulomatous mycosis usually confined to skin and subcutaneous tissues, presenting a worldwide distribution. The host defense mechanisms in chromoblastomycosis have not been extensively investigated. Langerhans cells (LC) are bone-marrow-derived, dendritic antigen-presenting cells of the epidermis, which constitutively express major histocompatibility complex (MHC) class II, and comprise 1-3% of total epidermal cells. LC are localized in suprabasal layers of the epidermis and in mucosa, where they play important roles in skin immune responses. The purpose of the present study was to evaluate the interaction of F. pedrosoi conidia or sclerotic cells with LC purified from BALB/c mice skin. We demonstrate here that LC phagocytose F. pedrosoi conidia but not sclerotic cells in the first 3 h of interaction, inhibiting hyphae formation during 12-hour coculture from both forms, internalized or not. Also, LC maturation, analyzed using CD40 and B7-2 expression, was inhibited by conidia, but not by sclerotic cells, indicating an important innate immunity function of LC against F. pedrosoi infection in these mice.  相似文献   

10.
Langerhans cells provide the epidermis with a surveillance network that samples the external environment influencing the decision between immunity and tolerance. Langerhans cells are immature dendritic cells acquiring antigens from foreign invaders as well as damaged native tissue for display to the immune response. The current paradigm suggests that the state of maturity of Langerhans cells, defined by the display of molecules that provoke immune responses (histocompatibility, co-stimulators, adhesion and homing receptors), determines whether emigration of the Langerhans cell to lymph nodes signals immunity or tolerance. Other factors such as type of immunogen ingested, environmental danger signals and the level of cell death may also play a role in tipping the balance towards immunity or immunosuppression. As modulators of the immune response, Langerhans cells play a role in cutaneous autoimmunity in lupus and in cancers that have an affinity for the epidermis such as cutaneous T cell lymphoma.  相似文献   

11.
Mouse epidermal cells (EC) are composed of at least two phenotypically discrete populations of cells that in epidermal sheets have a dendritic morphology: Ia+ Langerhans cells (LC) and dendritic, bone marrow-derived, Ia- cells that express Thy-1 antigen (Thy-1+ dEC). Thy-1+ dEC lack other typical T cell markers such as L3T4, Lyt-1, and Lyt-2; however they do express Ly-5 and asialo GM1 in common with NK cells and certain other leukocytes. To investigate the functional capabilities of Thy-1+ dEC in vitro, cell suspensions prepared from trypsin-disaggregated sheets of mouse body wall epidermis were first enriched to 8 to 20% Ia+ and 20 to 40% Thy-1+ cells by centrifugation over Isolymph and then were cultured for 2 to 10 days with Concanavalin A (Con A) and/or partially purified rat IL 2. Con A-induced proliferation of EC was readily seen, with the maximal response occurring at a Con A concentration of 2.5 micrograms/ml on day 5 of culture. Con A responses were significantly enhanced by the continuous presence of 1 microgram/ml indomethacin. Responses both in the presence and absence of Con A were significantly enhanced by the addition of 5 to 10 U/ml of partially purified rat IL 2; proliferation in cultures stimulated by both Con A and IL 2 continued to increase throughout the 10-day culture period. Culture of fluorescence-activated cell sorter (FACS)-separated EC suspensions revealed that Thy-1-depleted EC and irradiated Thy-1+ EC failed to proliferate in response to Con A and IL 2, whereas unirradiated purified Thy-1+ EC gave enhanced Con A- and IL 2-induced responses compared with the unseparated population. Finally, to distinguish between the proliferation of small numbers of mature peripheral T cells and that of Thy-1+ dEC, antibody and complement-depletion studies were conducted with an unusual monoclonal anti-Thy-1 reagent, 20-10-5S, and with the anti-T cell reagents, anti-L3T4 and anti-Lyt-2. Thy-1+ dEC, but not LC, express the 20-10-5S determinant; furthermore, in CBA (Thy-1.2) mice 20-10-5S reacts with Thy-1+ dEC, thymocytes, and peripheral T cells, whereas in AKR/J (Thy-1.1) mice, it reacts only with Thy-1+ dEC and thymocytes and not with peripheral T cells. Pretreatment of AKR/J EC with 20-10-5S and complement abolished the capacity of such cells to respond to Con A and to IL 2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The capacity of epidermal cells (EC) to stimulate T cell activation is a Langerhans cell (LC)-dependent phenomenon. In all in vitro assays probed, LC subserve antigen-presenting cell functions in that they display surface-bound foreign or altered-self structures and thereby activate T cell responses. In contrast, attempts to demonstrate accessory cell (ACC) function of LC-containing EC have yielded negative results, i.e., EC lacking foreign cell surface antigens were not able to restore cytotoxic T lymphocyte (CTL) responses in Ia+ adherent cell-depleted cultures. Reasoning that the ACC function of EC might be critically linked to cluster formation between LC and other cell types involved, we tested the ACC function of EC under experimental conditions that allow a close physical contact between the cell types involved (round-bottomed microtiter plates and brief centrifugation of culture plates). By using these modifications, the failure of highly purified B6 T cells to develop alloreactive CTL activity when stimulated with either highly purified, mitomycin C-treated C3H or B6CF1 T cells was restored by the addition of B6 EC. The CTL thus generated produced significant lysis of Con-A-stimulated C3H or BALB/c, but not B6, spleen cell targets. In a similar fashion, TNP- or FITC-specific CTL were generated when (in a syngeneic system) mitomycin C-treated TNP- or FITC-modified stimulator T cells and responder T cells were co-cultured in the presence, but not in the absence, of unmodified EC. The capacity of EC to restore CTL activity in a culture system depleted of Ia-bearing cells was not dependent upon their H-2 type, but was critically linked to the presence of Ia-bearing LC. We therefore conclude that LC-containing EC can subserve the ACC function in the generation of H-2-restricted CTL, provided that culture conditions are chosen that allow a close physical contact between the cell types involved.  相似文献   

13.
14.
Signals regulating the traffic of Langerhans cell precursors from blood to the epidermis are not yet fully understood. The observations that TGF-beta1 is of unique importance in Langerhans cells (LC) ontogeny and that macrophage inflammatory protein-3alpha (MIP-3alpha) is able to attract LC within the epidermis, prompted us to study the effect of MIP-3alpha and TGF-beta1 on the migration of LC precursors. The migratory capacity of immature dendritic cells (DC) was assessed using a reconstituted basement membrane assay (Matrigel), mimicking the prerequisite passage through the dermal-epidermal basement membrane on the way into the epidermis. DC differentiated from cord blood CD34 cells in the presence of GM-CSF plus TNF-alpha were subjected to migration using modified Boyden chambers. Day-6 DC progenitors migrated in a dose-dependent fashion in response to MIP-3alpha, and CD1alpha+ LC precursors responded preferentially to the chemokine. Immature DC did not respond strongly to TGF-beta1 alone in migration assays, but up to 68% of the cells migrated in response to MIP-3alpha plus TGF-beta1. Among them, at least 50% expressed CD1a and E-cadherin and can be considered LC precursors. The allostimulatory function of these cells was significantly more potent than that which migrated in response to MIP-3alpha alone. Our results show that a significant proportion of immature DC is able to migrate through a dermal-epidermal basement membrane equivalent. In the presence of TGF-beta1, the DC which respond to MIP-3alpha have the phenotype and the functional capacity of epidermal LC. Our findings underline the role of MIP-3alpha and TGF-beta1 in attraction and localization of immature LC within the epidermis under normal conditions.  相似文献   

15.
Spleen dendritic cells (DC) and epidermal Langerhans cells (LC) belong to the same family of dendritic leukocytes and are considered to be prototypes of lymphoid DC and nonlymphoid DC, respectively. These cells are active APC in vitro and play a key role in the induction of primary T cell dependent immune responses in vivo. Two functional states of LC have been characterized in vitro, freshly isolated LC and cultured LC (cLC). That cLC closely resemble spleen DC in phenotype and function, has led to the hypothesis that LC undergo maturation toward DC while in culture, an event that has been correlated with the emigration of LC from skin into lymphoid organs. To date, however, DC have been studied only after overnight culture. To better understand the relationship between LC and DC, we examined DC shortly after their isolation from spleen, and after 24 h of culture. Freshly isolated DC (fDC) express high levels of MHC molecules and low levels of Fc gamma RII and C3biR; fDC also uniformly express the Ag recognized by the mAb 33D1, NLDC-145, and J11d. After culture, DC display a marked increase in the expression of MHC molecules, and they are induced to express the low affinity receptor for IL-2. By contrast, the expression of Fc gamma RII and F4/80 decreases with culture. With respect to function, fDC can efficiently present keyhole limpet hemocyanin to Ag-specific T cells, whereas cultured DC exhibit a marked reduction in this capacity. Finally, both fDC and cultured DC are capable of endocytosing surface Ia molecules, but only fDC are able to deliver them into acidic compartments. Our data indicate that fDC from spleen resemble freshly isolated LC from epidermis and that both cells undergo parallel changes during culture. These results suggest that LC and DC possess analogous attributes in vivo and respond similarly to external influences.  相似文献   

16.
Selenium (Se) is a dietary trace element that is essential for effective immunity and protection from oxidative damage induced by ultraviolet radiation (UVR). Langerhans cells (LC) represent the major antigen-presenting cells resident in the epidermis; a proportion migrate from the skin to the draining lymph nodes in response to UVR. Because it is known that Se deficiency impairs immune function, we determined what effect this has on LC numbers. CH3/HeN mice were weaned at 3 wk and placed on diets containing <0.005 ppm of Se (Se deficient) or 0.1 ppm of Se (Se adequate, control mice). After 5 wk on the diet, the epidermal LC numbers in the Se-adequate group were 966±51 cells/mm2 and LC counts in the epidermis of the Se-deficient mice were 49% lower (p<0.05). Glutathione peroxidase-I (GPx) activity was measured in the epidermis, lymph nodes, and liver. In the epidermis, the activity of GPx in the Se-deficient mice was only 39% (p<0.01) of that seen in epidermis from Se-adequate mice (1.732 U/mg protein). The mice were then irradiated with one dose of 1440 J/m2 of broadband UVB or mock irradiated. After 24 h, the decrease in LC number after UVB was greater in the Se-adequate mice, (40% decrease) compared to the Se-deficient group (10%). Thus, Se deficiency reduces epidermal LC numbers, an effect that might compromise cutaneous immunity.  相似文献   

17.
Human papillomavirus type 16 (HPV16) is an oncogenic virus that causes persistent infections in cervical epithelium. The chronic nature of HPV16 infections suggests that this virus actively evades the host immune response. Intraepithelial Langerhans cells (LC) are antigen-presenting cells that are critical in T-cell priming in response to viral infections of the skin. Here we show that HPV16 infection is directly associated with a reduction in the numbers of LC in infected epidermis. Adhesion between keratinocytes (KC) and LC, mediated by E-cadherin, is important in the retention of LC in the skin. Cell surface E-cadherin is reduced on HPV16-infected basal KC, and this is directly associated with the reduction in numbers of LC in infected epidermis. Expression of a single viral early protein, HPV16 E6, in KC reduces levels of cell surface E-cadherin thereby interfering with E-cadherin-mediated adhesion. Through this pathway, E6 expression in HPV16-infected KC may limit presentation of viral antigens by LC to the immune system, thus preventing the initiation of a cell-mediated immune response and promoting survival of the virus.  相似文献   

18.
Migration and differentiation of Langerhans cell precursors   总被引:1,自引:0,他引:1  
Epidermal Langerhans cells (LC) are the first sentinels of the skin immune system. To study immigration of human LC precursor cells into the skin, we established a two-compartmental skin model consisting of a dermal matrix and an epidermal sheet of keratinocytes. We tested the individual components of the skin model for their influence on phenotype and function of LC precursors. A time window at day 5/6 of differentiation was determined, during which in vitro generated LC precursors expressed adhesion molecules and chemokine receptors required for transmigration across endothelial cell layers and the dermis towards the epidermis. They expressed L-selectin, integrins, platelet endothelial cell adhesion molecule-1, E-cadherin and CC-chemokine receptor 6 and were thus fitted out for transendothelial migration and immigration into the dermis. In a transwell system, these LC precursors migrated towards the chemokine MIP3alpha, demonstrating functional integrity of chemokine receptor 6. For the in vitro reconstituted skin, keratinocytes were grown on a de-epidermized dermis for one to three weeks and formed an epidermal sheet. We allowed LC precursor cells to migrate into this two-compartmental model from the dermal side and examined the presence of CD1alpha--positive cells. LC precursors migrated through the dermal matrix towards the layer of keratinocytes representing the epidermis and could be identified by immunohistology. Experiments designed to investigate the influence of signals provided by both the skin components and by the LC precursors on LC immigration into the skin are in progress.  相似文献   

19.
Dendritic cells (DC) play a pivotal role in the control of T cell immunity due to their ability to stimulate naive T cells and direct effector function. Murine and human DC are composed of a number of phenotypically, and probably developmentally, distinct subsets, which may play unique roles in the initiation and regulation of T cell responses. The skin is populated by at least two subsets of DC: Langerhans cells (LC), which form a contiguous network throughout the epidermis, and dermal DC. LC have classically been thought vital to initiate T cell responses to cutaneous Ags. However, recent data have highlighted the importance of dermal DC in cutaneous immunity, and the requirement for LC has become unclear. To define the relative roles of LC and dermal DC, we and others generated mouse models in which LC were specifically depleted in vivo. Unexpectedly, these studies yielded conflicting data as to the role of LC in cutaneous contact hypersensitivity (CHS). Extending our initial finding, we demonstrate that topical Ag is inefficiently transported to draining lymph nodes in the absence of LC, resulting in suboptimal priming of T cells and reduced CHS. However, dermal DC may also prime cutaneous T cell responses, suggesting redundancy between the two different skin DC subsets in this model.  相似文献   

20.
Epidermal Langerhans cells (LC) are potent APCs surveying the skin. They are crucial regulators of T cell activation in the context of inflammatory skin disease and graft-versus-host disease (GVHD). In contrast to other dendritic cell subtypes, murine LC are able to reconstitute after local depletion without the need of peripheral blood-derived precursors. In this study, we introduce an experimental model of human skin grafted to NOD-SCID IL2Rγ(null) mice. In this model, we demonstrate that xenografting leads to the transient loss of LC from the human skin grafts. Despite the lack of a human hematopoietic system, human LC repopulated the xenografts 6 to 9 wk after transplantation. By staining of LC with the proliferation marker Ki67, we show that one third of the replenishing LC exhibit proliferative activity in vivo. We further used the skin xenograft as an in vivo model for human GVHD. HLA-disparate third-party T cells stimulated with skin donor-derived dendritic cells were injected intravenously into NOD-SCID IL2Rγ(null) mice that had been transplanted with human skin. The application of alloreactive T cells led to erythema and was associated with histological signs of GVHD limited to the transplanted human skin. The inflammation also led to the depletion of LC from the epidermis. In summary, we provide evidence that human LC are able to repopulate the skin independent of blood-derived precursor cells and that this at least partly relates to their proliferative capacity. Our data also propose xeno-transplantation of human skin as a model system for studying the role of skin dendritic cells in the efferent arm of GVHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号