首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence has been presented for the formation of an intermediate compound in the metabolism of 3-hydroxyanthranilic acid to quinolinic acid by 3-hydroxyanthranilase from rat liver preparations. The production of the intermediate was demonstrated by spectrophotometric analyses and quinolinic acid measurements of incubation mixtures in which small amounts of acetone powder extracts of rat liver were used as the enzyme source. The calculated extinction coefficient of the compound was more than double that of the substrate or of the final product, quinolinic acid.The intermediate was shown to be an oxidation product of 3-hydroxyanthranilate as indicated by Thunberg experiments. The data obtained indicate that the intermediate may be a quinone-type compound.  相似文献   

2.
A new fluorometric assay method for quinolinic acid is introduced in this study. Quinolinic acid-hydrazine complex, a stable fluorescent compound, is formed after heating quinolinic acid with hydrazine at 215–220°C for 2 min. Fluorescence excitation and emission maxima of the complex are at 285 and 380 nm, respectively. This assay method is rapid and rather sensitive. It takes about 30 min to ascertain the amount of quinolinic acid as low as 50 ng. Specificity of this method is high among biological compounds. An ultrasensitive assay method for uinolinic acid (as low as 20 pg) with diphenylhydrazine instead of hydrazine is also found. After separating the quinolinic acid-diphenylhydrazine complex from residual diphenylhydrazine, this ultrasensitive assay method may be practically applicable.  相似文献   

3.
Sessile marine animals, such as sponges, are prone to infection by prokaryotic as well as by eukaryotic attacking organisms. Using the sponge Suberites domuncula we document for the first time that in its apoptotic tissue a toxic compound is produced that very likely controls the elimination of the dying tissue. Apoptosis was induced by exposing the sponges to 2,2'-dipyridyl or by maintaining them under nonaeration conditions. After that treatment at least one eukaryotic epibiont (Bittium sp.) could be found grazing on apoptotic tissue. Cell proliferation assays demonstrated that aqueous extracts from unaffected sponge tissue displayed no cytotoxicity. However, addition of an extract from apoptotic tissue to neuronal cells from rat brain exerted strong toxicity. The underlying compound was identified as quinolinic acid; quantitative determination showed that quinolinic acid is present only in apoptotic tissue (4.8 mg/g dry wet weight). The complementary DNA encoding the key enzyme of the quinolinic acid pathway, 3-hydroxyanthranilate 3,4-dioxygenase, was cloned and characterized. The expression of this gene is up-regulated in apoptotic tissue. These data suggest that a complex molecular network controls apoptotic elimination of sponge tissue, which results in the synthesis of the bioactive compound quinolinic acid that controls the elimination of the tissue, perhaps via differential effects on grazing epibionts.  相似文献   

4.
The de novo nicotinamide adenine dinucleotide biosynthetic pathway ofEscherichia coli was investigated; using a cell-free extract of anadB mutant, we synthesized a precursor of quinolinic acid, a key intermediate in the pathway, from14C-aspartic acid. The synthesis of this compound was repressible by nicotinic acid. This compund was partially purified by ion-exchange column chromatography and then further purified and characterized by ascending partition chromatography on thin-layer plates. A metabolic scheme is presented which hypothesizes that the isolated precursor of quinolinic acid results from the amination of 2-butynedioic acid.  相似文献   

5.
The use of o-methoxybenzoylalanine, a selective kynureninase inhibitor, has been proposed with the aim of reducing brain synthesis of quinolinic acid, an excitotoxic tryptophan metabolite. In liver homogenates, however, this compound caused unexpected accumulation of 3-hydroxyanthranilic acid, the product of kynureninase activity and the precursor of quinolinic acid. To explain this observation, we investigated the interaction(s) of o-methoxybenzoylalanine with 3-hydroxyanthranilic acid dioxygenase, the enzyme responsible for quinolinic acid formation. When the purified enzyme or partially purified cytosol preparations were used, o-methoxybenzoylalanine did not affect 3-hydroxyanthranilic acid dioxygenase activity. However, a significant reduction of this enzymatic activity did occur when o-methoxybenzoylalanine was tested in the presence of mitochondria. It is interesting that addition of purified mitochondria to 3-hydroxyanthranilic acid dioxygenase preparations reduced the enzymatic activity and the synthesis of quinolinic acid. In vivo, administration of o-methoxybenzoylalanine significantly reduced quinolinic acid synthesis and content in both blood and brain of mice. Our results suggest that mitochondrial protein(s) interact(s) with soluble 3-hydroxyanthranilic acid dioxygenase and cause(s) modifications in the enzyme resulting in a decrease in its activity. These modifications also allow the enzyme to interact with o-methoxybenzoylalanine, thus leading to a further reduction in quinolinic acid synthesis.  相似文献   

6.
Accumulation of the neurotoxin quinolinic acid within the brain occurs in a broad spectrum of patients with inflammatory neurologic disease and may be of neuropathologic significance. The production of quinolinic acid was postulated to reflect local induction of indoleamine 2,3-dioxygenase by cytokines in reactive cells and inflammatory cell infiltrates within the central nervous system. To test this hypothesis, macaques received an intraspinal injection of poliovirus as a model of localized inflammatory neurologic disease. Seventeen days later, spinal cord indoleamine 2,3-dioxygenase activity and quinolinic acid concentrations in spinal cord and cerebrospinal fluid were both increased in proportion to the degree of inflammatory responses and neurologic damage in the spinal cord, as well as the severity of motor paralysis. The absolute concentrations of quinolinic acid achieved in spinal cord and cerebrospinal fluid exceeded levels reported to kill spinal cord neurons in vitro. Smaller increases in indoleamine 2,3-dioxygenase activity and quinolinic acid concentrations also occurred in parietal cortex, a poliovirus target area. In frontal cortex, which is not a target for poliovirus, indoleamine 2,3-dioxygenase was not affected. A monoclonal antibody to human indoleamine 2,3-dioxygenase was used to visualize indoleamine 2,3-dioxygenase predominantly in grey matter of poliovirus-infected spinal cord, in conjunction with local inflammatory lesions. Macrophage/monocytes in vitro synthesized [13C6]quinolinic acid from [13C6]L-tryptophan, particularly when stimulated by interferon-gamma. Spinal cord slices from poliovirus-inoculated macaques in vitro also converted [13C6]L-tryptophan to [13C6]quinolinic acid. We conclude that local synthesis of quinolinic acid from L-tryptophan within the central nervous system follows the induction of indoleamine-2,3-dioxygenase, particularly within macrophage/microglia. In view of this link between immune stimulation and the synthesis of neurotoxic amounts of quinolinic acid, we propose that attenuation of local inflammation, strategies to reduce the synthesis of neuroactive kynurenine pathway metabolites, or drugs that interfere with the neurotoxicity of quinolinic acid offer new approaches to therapy in inflammatory neurologic disease.  相似文献   

7.
Quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhanced the Fenton reaction in phosphate buffer, respectively. The enhancement by quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid of the Fenton reaction may be partly related to their respective actions in the biological systems such as a neurotoxic effect (quinolinic acid), a marked growth-inhibitory action on rice seeding (alpha-picolinic acid and fusaric acid), and an antiseptic (2,6-pyridinedicarboxylic acid). The ultraviolet-visible absorption spectrum of the mixture of alpha-picolinic acid with ferrous ion showed a characteristic visible absorbance band with a lambda(max) at 443 nm, suggesting that alpha-picolinic acid chelate of Fe2+ ion forms in the solution. Similar characteristic visible absorbance band was also observed for the mixture of Fe2+ ion with quinolinic acid (or fusaric acid, or 2,6-pyridinedicarboxylic acid). The chelation seems to be related to the enhancement by quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid of the Fenton reaction. alpha-Picolinic acid was reported to be a toxic substance isolated from the culture liquids of blast mould (Piricularia oryzae CAVARA). On the other hand, it has also been known that chlorogenic acid protects rice plants from the blast disease. The chlorogenic acid inhibited the formation of the hydroxyl radical in the reaction mixture of alpha-picolinic acid, FeSO4(NH4)2SO4, and H2O2. Thus the inhibition may be a possible mechanism of the protective action of the chlorogenic acid against the blast disease.  相似文献   

8.
Although the neurotoxic tryptophan-kynurenine pathway metabolite quinolinic acid originates in brain by both local de novo synthesis and entry from blood, its concentrations in brain parenchyma, extracellular fluid, and CSF are normally below blood values. In the present study, an intraperitoneal injection of probenecid (400 mg/kg), an established inhibitor of acid metabolite transport in brain, into gerbils, increased quinolinic acid concentrations in striatal homogenates, CSF, serum, and homogenates of kidney and liver. Direct administration of probenecid (10 mM) into the brain compartment via an in vivo microdialysis probe implanted into the striatum also caused a progressive elevation in both quinolinic acid and homovanillic acid concentrations in the extracellular fluid compartment but was without effect on serum quinolinic acid levels. A model of microdialysis transport showed that the elevations in extracellular fluid quinolinic acid and homovanillic acid levels following intrastriatal application are consistent with probenecid block of a microvascular acid transport mechanism. We conclude that quinolinic acid in brain is maintained at concentrations below blood levels largely by active extrusion via a probenecid-sensitive carrier system.  相似文献   

9.
Quinolinic acid (QA) is a key intermediate of nicotinic acid (Niacin) which is an essential human nutrient and widely used in food and pharmaceutical industries. In this study, a quinolinic acid producer was constructed by employing comprehensive engineering strategies. Firstly, the quinolinic acid production was improved by deactivation of NadC (to block the consumption pathway), NadR (to eliminate the repression of L-aspartate oxidase and quinolinate synthase), and PtsG (to slow the glucose utilization rate and achieve a more balanced metabolism, and also to increase the availability of the precursor phosphoenolpyruvate). Further modifications to enhance quinolinic acid production were investigated by increasing the oxaloacetate pool through overproduction of phosphoenolpyruvate carboxylase and deactivation of acetate-producing pathway enzymes. Moreover, quinolinic acid production was accelerated by assembling NadB and NadA as an enzyme complex with the help of peptide-peptide interaction peptides RIAD and RIDD, which resulted in up to 3.7 g/L quinolinic acid being produced from 40 g/L glucose in shake-flask cultures. A quinolinic acid producer was constructed in this study, and these results lay a foundation for further engineering of microbial cell factories to efficiently produce quinolinic acid and subsequently convert this product to nicotinic acid for industrial applications.  相似文献   

10.
Normal excretion of quinolinic acid in Huntington's disease   总被引:2,自引:0,他引:2  
M P Heyes  E S Garnett  R R Brown 《Life sciences》1985,37(19):1811-1816
We measured the excretion of the endogenous neurotoxin quinolinic acid in 14 patients with Huntington's disease and in 11 age matched control subjects. Huntingtonian patients excreted less quinolinic acid, than controls. When normalised to urea or creatinine output quinolinic acid excretion was normal. We conclude that Huntington's disease is not associated with a generalised disturbance of quinolinic acid metabolism, however, a local hyperproduction of quinolinic acid cannot be excluded from our results.  相似文献   

11.
Quinolinic acid phosphoribosyltransferase (EC 2.4.2.19) was purified 3600-fold from rat liver and 280-fold from rat brain. Kinetic analyses (Km = 12 μM for the substrate quinolinic acid and Km 23 μM for the cosubstrate phosphoribosylpyrophosphate), physicochemical properties of the purified enzymes, inhibition by phthalic acid (Ki = 1.4 μM) and molecular weight determination (Mr 160 000 for the holoenzyme, consisting of five identical 32 kDa subunits) indicated the structural identity of quinolinic acid phosphoribosyltransferase from the two rat tissues. This was further confirmed immunologically, using antibodies raised against purified rat liver quinolinic acid phosphoribosyltransferase. Rat quinolinic acid phosphoribosyltransferase differs in several aspects from quinolinic acid phosphoribosyltransferase isolated from other organisms. The purified enzyme will prove a useful tool in the examination of a possible role of quinolinic acid in cellular function and/or dysfunction.  相似文献   

12.
Abstract: To study the regulation of the synthesis of quinolinic and kynurenic acids in vivo, we evaluated (a) the metabolism of administered kynurenine by measuring the content of its main metabolites 3-hydroxykynurenine, anthranilic acid, and 3-hydroxyanthranilic acid in blood and brain of mice; (b) the effects of ( m -nitrobenzoyl)alanine, a selective inhibitor of kynurenine hydroxylase and of ( o -methoxybenzoyl)alanine, a selective inhibitor of kynureninase, on this metabolism; and (c) the effects of ( o -methoxybenzoyl)alanine on liver kynureninase and 3-hydroxykynureninase activity. The conclusions drawn from these experiments are (a) the disposition of administered kynurenine preferentially occurs through hydroxylation in brain and through hydrolysis in peripheral tissues; (b) ( m -nitrobenzoyl)alanine, the inhibitor of kynurenine hydroxylase, causes the expected changes in brain kynurenine metabolism, such as a decrease of 3-hydroxykynurenine, and an increase of kynurenic acid; and (c) ( o -methoxybenzoyl)alanine, the kynureninase inhibitor, increases brain concentration of the cytotoxic compound 3-hydroxykynurenine, and unexpectedly does not reduce brain concentration of 3-hydroxyanthranilic acid, the direct precursor of quinolinic acid. Taken together, the experiments suggest that the systemic administration of a kynurenine hydroxylase inhibitor is a rational approach to increase the brain content of kynurenate and to decrease that of cytotoxic kynurenine metabolites, such as 3-hydroxykynurenine and quinolinic acid.  相似文献   

13.
The nutritional efficiency of quinolinic acid as a substitute for nicotinic acid was investigated using weanling rats Of the Sprague Dawley strain (3-weeks old) fed a nicotinic acid-free, tryptophan-limited diet containing various amounts of nicotinic acid or quinolinic acid. Judging from the growth response, food efficiency ratio, levels of NAD activity in the blood, liver, brain and upper small intestine, and urinary excretion of niacin we have concluded that exogenous quinolinic acid is approximately 1/9 as active as nicotinic acid. As many foods contain quinolinic acid, dietary quinolinic acid cannot be ignored from the standpoint of tryptophan and nicotinic acid replacement.  相似文献   

14.
Mode of action of melinacidin, an inhibitor of nicotinic acid biosynthesis   总被引:3,自引:2,他引:1  
Melinacidin, a new antibacterial agent, blocked the synthesis of nicotinic acid and its amide in Bacillus subtilis cells. The inhibitory activity of the agent was reversed by nicotinic acid, its amide, or nicotinamide adenine dinucleotides, but not by l-kynurenine, l-3-hydroxykynurenine, l-hydroxyanthranilic acid, or quinolinic acid. These properties indicated that the antibiotic interferes with the conversion of quinolinic acid to nicotinate ribonucleotide by the enzyme quinolinate phosphoribosyl-transferase. However, the activity of a purified preparation of this enzyme derived from a Pseudomonas strain was not impaired by the antibiotic. This suggested that, in B. subtilis, melinacidin interferes with a reaction which occurs before the formation of quinolinic acid in the biosynthetic pathway leading to nicotinic acid. Failure of quinolinic acid to reverse melinacidin inhibition in B. subtilis cultures might be due to insufficient penetration of the cell membranes by quinolinate.  相似文献   

15.
Excitotoxicity elicited by overactivation of N-methyl-D-aspartate receptors is a well-known characteristic of quinolinic acid-induced neurotoxicity. However, since many experimental evidences suggest that the actions of quinolinic acid also involve reactive oxygen species formation and oxidative stress as major features of its pattern of toxicity, the use of antioxidants as experimental tools against the deleterious effects evoked by this neurotoxin becomes more relevant. In this work, we investigated the effect of a garlic-derived compound and well-characterized free radical scavenger, S-allylcysteine, on quinolinic acid-induced striatal neurotoxicity and oxidative damage. For this purpose, rats were administered S-allylcysteine (150, 300 or 450 mg/kg, i.p.) 30 min before a single striatal infusion of 1 microl of quinolinic acid (240 nmol). The lower dose (150 mg/kg) of S-allylcysteine resulted effective to prevent only the quinolinate-induced lipid peroxidation (P < 0.05), whereas the systemic administration of 300 mg/kg of this compound to rats decreased effectively the quinolinic acid-induced oxidative injury measured as striatal reactive oxygen species formation (P < 0.01) and lipid peroxidation (P < 0.05). S-Allylcysteine (300 mg/kg) also prevented the striatal decrease of copper/zinc-superoxide dismutase activity (P < 0.05) produced by quinolinate. In addition, S-allylcysteine, at the same dose tested, was able to reduce the quinolinic acid-induced neurotoxicity evaluated as circling behavior (P < 0.01) and striatal morphologic alterations. In summary, S-allylcysteine ameliorates the in vivo quinolinate striatal toxicity by a mechanism related to its ability to: (a) scavenge free radicals; (b) decrease oxidative stress; and (c) preserve the striatal activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). This antioxidant effect seems to be responsible for the preservation of the morphological and functional integrity of the striatum.  相似文献   

16.
Abstract: Quinolinic acid is an excitatory, neurotoxic tryptophan metabolite proposed to play a role in the pathogenesis of hepatic encephalopathy. This involvement was investigated in rat and rabbit models of fulminant hepatic failure at different stages of hepatic encephalopathy. Although plasma and brain tryptophan levels were significantly increased in all stages of hepatic encephalopathy, quinolinic acid levels increased three- to sevenfold only in the plasma, CSF, and brain regions of animals in stage IV hepatic encephalopathy. Plasma-CSF and plasma-brain quinolinic acid levels in rats and rabbits with fulminant hepatic failure were strongly correlated, with CSF and brain concentrations ∼10% those of plasma levels. Moreover, there was no significant regional difference in brain quinolinic acid concentrations in either model. Extrahepatic indoleamine-2,3-dioxygenase activity was not altered in rats in stage IV hepatic encephalopathy, but hepatic l -tryptophan-2,3-dioxygenase activity was increased. These results suggest that quinolinic acid synthesized in the liver enters the plasma and then accumulates in the CNS after crossing a permeabilized blood-brain barrier in the end stages of liver failure. Furthermore, the observation of low brain concentrations of quinolinic acid only in stage IV encephalopathy suggests that the contribution of quinolinic acid to the pathogenesis of hepatic encephalopathy in these animal models is minor.  相似文献   

17.
Quinolinic acid, an endogenous excitotoxin, and kynurenic acid, an antagonist of excitatory amino acid receptors, are believed to be synthesized from tryptophan after the opening of the indole ring. They were measured in the rat brain and other organs using gas chromatography-mass spectrometry or HPLC. The enzyme indoleamine 2,3-dioxygenase, capable of cleaving the indole ring of tryptophan, was induced by administering bacterial endotoxins to rats, which significantly increased the brain content of both quinolinic and kynurenic acids. Nicotinylalanine, an analogue of kynurenine, inhibited this endotoxin-induced accumulation of quinolinic acid while potentiating the accumulation of kynurenic acid. The possibility of significantly increasing brain concentrations of kynurenic acid without a concomitant increase in quinolinic acid may provide a useful approach for studying the role of these electrophysiologically active tryptophan metabolites in brain function and preventing the possible toxic actions of abnormal synthesis of quinolinic acid.  相似文献   

18.
In the present study we investigated the effect of intrastriatal administration of 150 nmol quinolinic acid to young rats on critical enzyme activities of energy production and transfer, as well as on 14CO2 production from [1-14C]acetate at distinct periods after quinolinic acid injection. We observed that quinolinic acid injection significantly inhibited complexes II (50%), III (46%) and II-III (35%), as well as creatine kinase (27%), but not the activities of complexes I and IV and citrate synthase in striatum prepared 12 h after treatment. In contrast, no alterations of these enzyme activities were observed 3 or 6 h after quinolinic acid administration. 14CO2 production from [1-14C]acetate was also significantly inhibited (27%) by quinolinic acid in rat striatum prepared 12 h after injection. However, no alterations of these activities were observed in striatum homogenates incubated in the presence of 100 microm quinolinic acid . Pretreatment with the NMDA receptor antagonist MK-801 and with creatine totally prevented all inhibitory effects elicited by quinolinic acid administration. In addition, alpha-tocopherol plus ascorbate and the nitric oxide synthase inhibitor l-NAME completely abolished the inhibitions provoked by quinolinic acid on creatine kinase and complex III. Furthermore, pyruvate pretreatment totally blocked the inhibitory effects of quinolinic acid injection on complex II activity and partially prevented quinolinic acid-induced creatine kinase inhibition. These observations strongly indicate that oxidative phosphorylation, the citric acid cycle and cellular energy transfer are compromised by high concentrations of quinolinic acid in the striatum of young rats and that these inhibitory effects were probably mediated by NMDA stimulation.  相似文献   

19.
Antibodies to quinolinic acid were produced in rabbits with protein-conjugated and gold particle-adsorbed quinolinic acid. Quinolinic acid immunoreactivity was below detection limits in carbodiimide-fixed rat brain. In contrast, strong quinolinic acid immunoreactivity was observed in spleen cells with variable, complex morphology located predominantly in the periarterial lymphocyte sheaths. In the thymus, quinolinic acid immunoreactivity was observed in cells with variable morphology, located almost exclusively in the medulla. Lymph nodes and gut-associated lymphoid tissue contained many, strongly stained cells of similar complex morphology in perifollicular areas. Immunoreactivity in liver and lung was restricted to widely scattered, perivascular cells and alveolar cells respectively. Additional stained cells with complex morphology were observed in bronchus-associated lymphoid tissue, in skin, and in the lamina propria of intestinal villi. Follicles in all secondary lymphoid organs were diffusely stained, ranging from mildly to moderately immunoreactive in spleen, to intensely immunoreactive in gut-associated lymphoid tissue. These results suggest that quinolinic acid is an immune system-specific molecule. Two hypothetical schemes are proposed to account for high levels of quinolinic acid in specific cells of the immune system.  相似文献   

20.
Several differences exist between quinolinic acid and N-methyl-D-aspartate (NMDA) in the potency and pharmacology of their neurotoxic actions in the brain, suggesting that quinolinic acid may act by mechanisms additional to the activation of NMDA receptors, possibly involving lipid peroxidation. In the present review, studies are considered which have attempted to determine whether free radicals might contribute to the neuronal damage induced by quinolinic acid. Following Injections into the hippocampus of anaesthetised rats, quinolinic acid induced damage is prevented by melatonin, by an action not blocked by the melatonin receptor blocker luzindole. Deprenyl, but not the non-selective monoamine oxidase inhibitor nialamide, also prevent quinolinic acid-induced damage. In vitro, several groups have shown that quinolinic acid can induce lipid peroxidation of brain tissue The results suggest that free radical formation contributes significantly to quinolinic acid-induced damage in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号