首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a two-phase operation, E. coli containing λSNNU1 (Q S ) in the chromosome is typically cultured at 33°C and cloned gene expression is induced by elevating the temperature. At least 40°C is necessary for complete induction of cloned gene expression; however, temperatures above 40°C have been shown to inhibit cloned gene expression. This suggests that a three-phase operation, which has an induction phase between the growth and production phases, may result in higher gene expression. In this study, optimal temperature management strategies were investigated for the three-phase operation of cloned gene expression in thermally inducible E. coli/bacteriophage systems. The optimal temperature for the induction phase was determined to be 40°C. When the temperature of the production stage was 33°C, the optimal time period for the induction phase at 40°C was determined to be 60 min. In contrast, when the temperature of the production phase was 37°C, the optimal period for the induction phase at 40°C was 20∼30 min. When the three-phase temperature and temporal profile were set at a growth phase of 33°C, an induction phase at 40°C for 30 min, and a production phase at 37°C, the highest level of cloned gene expression was achieved.  相似文献   

2.
Ochrobactrum intermedium DN2 was used to degrade nicotine in tobacco waste extracts. The optimal temperature and pH of nicotine degradation by strain DN2 was 30–37 °C and 7.0, respectively. Under these optimal conditions, the average degradation rate of nicotine in a 30L fed-batch culture was 140.5 mg l−1 h−1. The results of this study indicate that strain DN2 may be useful for reducing the nicotine content of reconstituted tobacco.  相似文献   

3.
The present study investigated the effects of three constituent amino acids on glutathione production in flask culture of Candida utilis. Although l-glutamic acid and glycine had little impact on cell growth and glutathione biosynthesis, l-cysteine positively influenced glutathione production, despite inhibiting cell growth when it was added prior to stationary phase. Adding 8 mmol/L of l-cysteine to the culture broth at 16 h boosted glutathione production by 91%, increasing the intracellular glutathione content by 106% compared to untreated controls. A temperature-shift strategy, in which we shifted batch and fed-batch cultures of C. utilis from 30 to 26°C, also significantly enhanced glutathione production. Applying both strategies (i.e. adding 20 mmol/L l-cysteine and shifting the temperature from 30 to 26°C) at 33 h enhanced the glutathione concentration and the intracellular glutathione content to 1,312 mg/L and 3.75%, respectively, during fed-batch cultivation (glucose feeding at a constant rate of 18.3 g/h). The average specific glutathione production rate under this condition was 129% higher than that of the control without strategy.  相似文献   

4.
This work investigated the effects of increasing temperature from 30°C to 47°C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30°C, and then the temperature of the system was raised so it ranged from 35°C in the last reactor to 43°C in the first reactor or feeding reactor with a 2°C difference between reactors. After 15 days at steady state, the temperature was raised from 37°C to 45°C for 25 days at steady state, then from 39°C to 47°C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/α, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40°C, weak growth at 41°C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. Of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40°C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39–47°C, but no isolates showing growth above 41°C were obtained.  相似文献   

5.
A high-density cell culture method to produce human angiostatin has been successfully established by constitutive expression of the protein in Pichia pastoris. The fermentation was carried out in a 20 l bioreactor with a 10 l working volume, using a high-density cell culture method by continuously feeding with 50% glycerol−0.8% PTM4 to the growing culture for 60 h at 30°C. Dissolved oxygen level was maintained at 25–30% and pH was controlled at 5 by the addition of 7 M NH4OH. Angiostatin was constitutively expressed during the fermentation by linking its expression to the P. pastoris constitutive GAP promoter (pGAP). But after 36 h of fermentation, the peak biomass growth was 305 as measured by absorption of 600 nm, while the peak angiostatin expression was 176 mg/l. Similar to the product expressed from inducible system [24], angiostatin produced from constitutive system also inhibited the angiogenesis on the CAM and suppressed the growth of B16 melanoma in C57BL/6J mouse. The above results suggest that GAP promoter is more efficient than AOX1 promoter for the expression of angiostatin in P. pastoris by shake flask culture or high-density cell fermentation and is likely to be an alternative to AOX1 promoter in large-scale expression of angiostatin and other heterologous proteins. Supported by the Natural Science Foundation of China (39670013) and “225” Science and Technology Program of Guangzhou Municipal Government of China (99-Z-004-001).  相似文献   

6.
Hydrogen was produced from various marine macro-algae (seaweeds) through anaerobic fermentation using an undefined bacterial consortium. In this study, anaerobic fermentation from various marine macro-algae for Ulva lactuca, Porphyra tenera, Undaria pinnatifida, and Laminaria japonica was studied. From this analysis Laminaria japorica was determined to be the optimum substrate for hydrogen production. When L. japornica was used as the carbon source for enhanced hydrogen production, the optimum fermentation temperature, substrate concentration, initial pH, and pretreatment condition were determined to be 35°C, 5%, 7.5, and BT120 (Ball mill and thermal treatments at 120°C for 30 min), respectively. In addition, hydrogen production was improved when the sludge was heat-treated at 65°C for 20 min. Under these conditions, about 4,164 mL of hydrogen was produced from 50 g/L of dry algae (L. japonica) for 50 h, with a hydrogen concentration around 34.4%. And the maximum hydrogen production rate and yield were found to be 70 mL/L·h and 28 mL/g dry algae, respectively.  相似文献   

7.
The principal objective of this study was to assess the effects of culture modes including batch culture, pulse fed-batch culture, constant feeding rate fed-batch culture, and exponential fed-batch culture on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Batch cultures had the highest levels of HA productivity, whereas fed-batch cultures were more favorable with regard to cell growth, and exponential fed-batch cultures evidenced the highest cell concentrations. A two-step culture model was proposed to enhance HA production: an exponential fed-batch culture was conducted prior to 8 h and then sucrose supplementation was applied for 8 h to start the batch fermentation of S. zooepidemicus. HA production and productivity were increased by 36 and 37% in the proposed two-step culture process as compared with that observed in the batch culture, respectively. The proposed two-step culture model can be applied in the production of secondary metabolites, and particularly of the exopolysaccharides.  相似文献   

8.
Rhamnolipid is one of the most commonly used biosurfactants with the ability to reduce the surface tension of water from 72 to 30 mN/m. An indigenous isolate Pseudomonas aeruginosa S2 possessing excellent ability to produce rhamnolipid was used as a model strain to explore fermentation technology for rhamnolipid production. Using optimal medium and operating conditions (37°C, pH 6.8, and 250 rpm agitation) obtained from batch fermentation, P. aeruginosa S2 was able to produce up to 5.31 g/l of rhamnolipid from glucose-based medium. To further improve the rhamnolipid yield, a pH-stat fed-batch culture was performed by maintaining a constant pH of 6.8 through manipulating glucose feeding. The effect of influent glucose concentration on rhamnolipid yield and productivity was investigated. Using the pH-stat culture, a maximum rhamnolipid concentration (6.06 g/l) and production rate (172.5 ml/h/l) was obtained with 6% glucose in the feed. Moreover, combining pH-stat culture with fill-and-draw operation allowed a stable repeated fed-batch operation for approximately 500 h. A marked increase in rhamnolipid production was achieved, leading to the best rhamnolipid yield of approximately 9.4 g/l during the second repeated run.  相似文献   

9.
Growth conditions that support bacteriocin (thermophilin T) production by Streptococcus thermophilus ACA-DC 0040 were identified. Synthesis of thermophilin T occurred during primary metabolic growth, while its specific rate of synthesis seemed to be optimal at T = 30°C. Thermophilin T activity rapidly decreased in the stationary phase, especially at high growth temperature (i.e. T = 42°C). In media with high content of complex nitrogen sources, high amounts of bacteriocin were detected in the growth environment, while about an 8-fold increase of thermophilin T titer and a 2-fold increase of specific synthesis rate was achieved when a fed-batch fermentation mode was applied.  相似文献   

10.
Coexpression of folding accessory proteins, molecular chaperones, and human peptidyl-prolyl cis-trans isomerase (PPIase) increased production of active cyclodextrin glycosyltransferase (CGTase) of Bacillus macerans, which is otherwise mainly expressed as inclusion body in recombinant Escherichia coli. The best partner for soluble expression of CGTase was found to be human PPIase followed by coexpression of DnaK-DnaJ-GrpE together with GroEL-GroES. Such a significant enhancement by human PPIase coexpression seemed to be due to dual functions of chaperone and peptidyl-prolyl cis-trans isomerization. Coexpression of GroEL-GroES or minichaperone alone did not influence the specific CGTase activity. For production of active CGTase in large amounts, a high cell density culture was achieved using a pH-stat fed-batch strategy. The optimized fed-batch fermentation resulted in dry cell weight of 103.4 g/L and CGTase activity of 1200 U/mL. Combination of human PPIase expression at a gene level and cell culture optimization at a process scale exerted a synergistic effect on the product yield of soluble CGTase expression in recombinant E. coli.  相似文献   

11.
Aspergillus niger hyphae were found to grow with unliquefied potato starch under aerobic conditions, but did not grow under anaerobic conditions. The raw culture ofA. niger catalyzed saccharification of potato starch to glucose, producing approximately 12 g glucose/L/day/ The extracellular enzyme activity was decreased in proportion to incubation time, and approximately 64% of initial activity was maintained after 3 days. At 50°C,A. niger hyphae growth stopped, while the extracellular enzyme activity peaked. On the basis of theA. niger growth property and enzyme activity, we designed a serial bioreactor system composed of four different reactors. Fungal hyphae were cultivated in reactor I at 30°C, uniquefied starch was saccharified to glycose by a fungal hyphae culture in reactors II and III at 50°C, and glucose was fermented to ethanol bySaccharomyces cerevisiae in reactor IV. The total glucose produced by fungal hyphae in reactor I and saccharification in reactor II was about 42 g/L/day. Ethanol production in reactor IV was approximately 22 g/L/day, which corresponds to about 79% of the theoretical maximum produced from 55 g starch/L/day.  相似文献   

12.
During fed-batch cultivation of Escherichia coli K-12, the proteomic response to a temperature downshift from 37 to 20°C was quantitatively monitored and analyzed by using two-dimensional electrophoresis. When the temperature of exponentially growing E. coli K-12 culture was downshifted to 20°C, the synthesis level of 57 intracellular proteins showed significant changes for a prolonged period of time, compared to the fed-batch culture controlled at 37°C. Thus, these proteins are regarded as important stress proteins responsive to cold shock, which were analyzed by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and identified using the E. coli SWISS-2DPAGE database. Most of the identified proteins were shown to be involved in energy metabolism, several cellular molecule biosynthetic pathways and catabolism, cell processes, flagellar biosynthesis and motility, and protein translation and folding. The systematic approach to the monitoring of proteomic responses and the detailed analysis results reported in this article would be useful in understanding the metabolic adaptation to lowered culture temperature and designing efficient fermentation strategies for the production of recombinant proteins and metabolites using E. coli strains.  相似文献   

13.
A production process, using upshock fermentation and osmotic downshock, for the effective production/excretion of mannosylglycerate (MG) by the trehalose-deficient mutant of the strain Thermus thermophilus RQ-1 has been developed. In the first phase of fed-batch fermentation, the knockout mutant was grown at 70°C on a NaCl-free medium. After the culture reached the end of the exponential growth phase, upshift in temperature and NaCl concentration was applied. The temperature was increased to 77°C, and NaCl was added up to 3.0% and kept constant during the second phase of fermentation. Although this shift in cultivation parameters caused a dramatic drop of cell density, a significant improvement in accumulation of MG up to 0.64 μmol/mg protein compared to batch fermentations (0.31 μmol/mg protein) was achieved. A total yield of 4.6 g MG/l of fermentation broth was obtained in the dialysis bioreactor with a productivity of 0.29 g MG l−1 h−1. The solute was released from the harvested biomass by osmotic downshock using demineralized water at 70°C. More than 90% of the intracellularly accumulated solute was recovered from the water fraction. The process was very efficient, as hyperosmotic shock, release of the solute, and reiterative fed-batch fermentation could be repeated at least four times.  相似文献   

14.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

15.
A process for the production of mannitol from fructose (5% to 25%) usingLeuconostoc mesenteroides NRRL B-1149 was investigated. Fermentations were carried out in batch or fed-batch fermentations without aeration at 28°C, pH 5.0. When 5% fructose was used in batch culture fermentation, the yield of mannitol was 78% of that expected theoretically. When the fructose concentration was increased to 10%, the yield dropped to 59.6% of the theoretical value. However, in the fed-batch culture, using 10% fructose, the yield was 81.9% of the theoretical value. In a 15% fructose fed-batch culture, with 5% fructose being added initially and the other 10% fructose being added as a continuous supply, the final yield was 83.7% of the theoretical yield. When 20% fructose was used in the same manner, the yield was 89.5% of theoretical yield.  相似文献   

16.
The heterologous production of a thermoactive alcohol dehydrogenase (AdhC) from Pyrococcus furiosus in Escherichia coli was investigated. E. coli was grown in a fed-batch bioreactor in minimal medium to high cell densities (cell dry weight 76 g/l, OD600 of 150). Different cultivation strategies were applied to optimize the production of active AdhC, such as lowering the cultivation temperature from 37 to 28°C, heat shock of the culture from 37 to 42°C and from 37 to 45°C, and variation of time of induction (induction at an OD600 of 40, 80 and 120). In addition to the production of active intracellular protein, inclusion bodies were always observed. The maximal activity of 30 U/l (corresponding to 6 mg/l active protein) was obtained after a heat shock from 37 to 42°C, and IPTG induction of the adhC expression at an OD600 of 120. Although no general rules can be provided, some of the here presented variations may be applicable for the optimization of the heterologous production of proteins in general, and of thermozymes in particular.  相似文献   

17.
In this study, the optimization of tannase production by solid state fermentation was investigated using cashew apple bagasse (CAB), an inexpensive residue produced by the cashew apple agroindustry, as a substrate. To accomplish this, CAB was enriched with 2.5% (w/w) tannic acid and 2.5% (w/w) ammonium sulphate and then moistened with water (60 mL/100 g of dry CAB). The influence of inoculum concentration (104 to 107 spores/g), temperature (20, 25, 30, and 35°C) and several additional carbon sources (glucose, starch, sucrose, maltose, analytical grade glycerol, and glycerol produced during biodiesel production) on enzyme production by Aspergillus oryzae was then evaluated. Supplementation with maltose and glycerol inhibited tannase synthesis, which resulted in lower enzyme activity. Starch and sucrose supplementation increased enzyme production, but decreased the enzyme productivity. The maximum tannase activity (4.63 units/g of dry substrate) was obtained at 30°C, using 107 spores/g and 1.0% (w/v) sucrose as an additional carbon source.  相似文献   

18.
The influence of two physicochemical factors involved in winemaking, temperature and SO2, on the kinetics and metabolic behavior of Kloeckera apiculata and Saccharomyces cerevisiae was examined. Highest biomass was reached at 15 and 25°C for K. apiculata and S. cerevisiae, respectively. Pure cultures of K. apiculata died off early with increasing temperature, but in co-culture with S. cerevisiae it showed higher viability and a change in the death curve from exponential to linear. Statistical analysis revealed that metabolite production was significantly different for the three cultures and also at the different fermentation temperatures. Besides, the interaction between culture type and temperature was significant. At temperatures from 15 to 30°C the mixed culture showed similar ethanol and lower acetic acid production compared with a pure culture of K. apiculata. SO2 addition slightly increased survival of the non-Saccharomyces species in pure and mixed cultures. Statistical evaluation indicated that culture type and SO2 addition significantly affected metabolite production, but the interaction between culture and SO2 was not significant. These results contribute to current knowledge of enological factors and their effect on prevalence and fermentative activities of the composite yeast flora and the statistical significance emphasizes the importance of the combined influence of the culture type and physicochemical factors on the production of fermentation metabolites.  相似文献   

19.
Lower induction temperature and polyoxyethylene sorbitan monolaurate (Tween-20) were successfully used to inhibit the aggregation of recombinant human consensus interferon-α mutant (cIFN) during Pichia pastoris fermentation. When the induction temperature was decreased from 30 to 20°C, the cIFN secreted into the medium was in the form of monomers instead of aggregates. The maximum specific activity at 20°C was 4.04 times as high as that at 30°C. There was no obvious effect on the cell growth at 20°C, but the total protein level was decreased. Similar inhibition effect on cIFN aggregation was observed when 0.2 g l−1 Tween-20 was added during induction. Furthermore, there was a synergistic effect found between induction temperature and Tween-20 on the inhibition of cIFN aggregation. The maximum specific activity with Tween-20 at 20°C was 19.9-fold higher than that without Tween-20 at 30°C.  相似文献   

20.
重组毕赤酵母高密度发酵表达H5N1禽流感病毒糖蛋白   总被引:3,自引:0,他引:3  
在10L发酵罐中,对高致病性禽流感病毒H5N1糖蛋白HA1在重组毕赤酵母中的表达发酵工艺进行了研究。通过分批补料培养方法探讨不同培养温度、诱导温度、补料方式、微量元素等因素对菌体的生长以及重组蛋白表达和活性的影响。结果表明,菌种培养和诱导温度均为25oC时,菌体的生长、分泌表达量和与广谱中和抗体的反应活性较好;微量元素是影响重组HA1蛋白生物活性的重要因素;通过优化高密度发酵工艺,H5N1病毒糖蛋白HA1在发酵罐中的表达量比摇瓶培养提高10.5倍,达到约120mg/L,为大规模制备高致病性禽流感病毒的HA1蛋白奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号