首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
6-Phosphofructokinases (Pfk) are homo- and heterooligomeric, allosteric enzymes that catalyze one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk revealed several adenine nucleotide binding sites. Herein, we determined the functional relevance of two adenine nucleotide binding sites through site-directed mutagenesis and enzyme kinetic studies. Subsequent characterization of Pfk mutants allowed the identification of the activating (AMP, ADP) and inhibitory (ATP, ADP) allosteric binding sites. Mutation of one binding site reciprocally influenced the allosteric regulation through nucleotides interacting with the other binding site. Such reciprocal linkage between the activating and inhibitory binding sites is in agreement with current models of allosteric enzyme regulation. Because the allosteric nucleotide binding sites in eukaryotic Pfk did not evolve from prokaryotic ancestors, reciprocal linkage of functionally opposed allosteric binding sites must have developed independently in prokaryotic and eukaryotic Pfk (convergent evolution).  相似文献   

2.
1. Incubation of soluble spinach Coupling Factor 1 (CF1) with dicyclohexylcarbodiimide (DCCD) results in the inactivation of the ATPase. The DCCD inactivation is time- and concentration-dependent. Complete inactivation of the CF1-ATPase activity requires the binding of 2 mol of DCCD/mol of CF1. The binding sites of DCCD are located on the beta subunit of CF1. 2. DCCD modification of soluble CF1 eliminates one adenine nucleotide binding site which is exposed by dithiothreitol activation or by incubation with tentoxin. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. Half-maximal inhibition occurs at about pH 7.5. 3. The DCCD-modified CF1, reconstituted with EDTA-treated chloroplasts, is fully active is restoring proton uptake but not in restoring ATP synthesis or light-dependent adenine nucleotide exchange.  相似文献   

3.
1. Parameters of ATP uptake by fully functional Saccharomyces cerevisiae mitochondria, including kinetic constants, binding constants and sensitivity to atractylate, closely resemble those of mammalian mitochondria. Scatchard plots of atractylate-sensitive adenine nucleotide binding indicate two distinct sites of high affinity (binding constant, K(D)'=1mum), and low affinity (binding constant, K(D)'=20mum) in the ratio 1:3. Uptake has high Arrhenius activation energies (+35 and +57kJ/mol), above and below a transition temperature of 11 degrees C. Atractylate-insensitive ATP uptake is apparently not saturable and has a low Arrhenius activation energy (6kJ/mol), suggesting a non-specific binding process. 2. Kinetic and binding constants for ATP uptake are not significantly changed in catabolite-repressed or anaerobic mitochondrial structures. 3. Inhibition of the mitochondrial protein-synthesizing system by growth of cells in the presence of erythromycin, or loss of mitochondrial DNA by mutation profoundly alters the adenine nucleotide transporter. ATP uptake becomes completely insensitive to atractylate, and the high-affinity binding site is lost. However, the adenine nucleotide transporter does not appear to be totally eliminated, as a moderate amount of saturable low-affinity ATP binding remains. 4. It is concluded that products of the mitochondrial protein-synthesizing system, probably coded by mitochondrial DNA, are required for the normal function of the adenine nucleotide transporter.  相似文献   

4.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

5.
The adenylyl cyclases (ACs) are a family of enzymes that are key elements of signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the purine binding site (P-site) followed by metal mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known and unique isoform combinations are expressed in a tissue specific manner. The development of isoform specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of novel therapeutic agents. In order to develop novel AC inhibitors, we have chosen a design approach utilizing molecules with the adenine ring system joined to a metal-coordinating hydroxamic acid via flexible acyclic linkers. The designed inhibitors were assayed against type V AC with the size and heteroatom content of the linkers varied to probe the interaction of the nucleotide and metal binding sites within the enzyme.  相似文献   

6.
Nicotinamide adenine dinucleotide synthetases (NADS) catalyze the amidation of nicotinic acid adenine dinucleotide (NAAD) to yield the enzyme cofactor nicotinamide adenine dinucleotide (NAD). Here we describe the crystal structures of the ammonia-dependent homodimeric NADS from Escherichia coli alone and in complex with natural substrates and with the reaction product NAD. The structures disclosed two NAAD/NAD binding sites at the dimer interface and an adenosine triphosphate (ATP) binding site within each subunit. Comparison with the Bacillus subtilis NADS showed pronounced chemical differences in the NAAD/NAD binding sites and less prominent differences in the ATP binding pockets. In addition, the E. coli NADS structures revealed unexpected dynamical rearrangements in the NAAD/NAD binding pocket upon NAAD-to-NAD conversion, which define a catalysis state and a substrate/product exchange state. The two states are adopted by concerted movement of the nicotinysyl moieties of NAAD and NAD, Phe-170, and residues 224-228, which may be triggered by differential coordination of a magnesium ion to NAAD and NAD. Phylogenetic structure comparisons suggest that the present results are relevant for designing species-specific antibiotics.  相似文献   

7.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   

8.
Pertussis toxin catalyzed ADP-ribosylation of the guanyl nucleotide binding protein transducin was stimulated by adenine nucleotide and either phospholipids or detergents. To determine the sites of action of these agents, their effects were examined on the transducin-independent NAD glycohydrolase activity. Toxin-catalyzed NAD hydrolysis was increased synergistically by ATP and detergents or phospholipids; the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) was more effective than the nonionic detergent Triton X-100 greater than lysophosphatidylcholine greater than phosphatidylcholine. The A0.5 for ATP in the presence of CHAPS was 2.6 microM; significantly higher concentrations of ATP were required for maximal activation in the presence of cholate or lysophosphatidylcholine. In CHAPS, NAD hydrolysis was enhanced by ATP greater than ADP greater than AMP greater than adenosine; ATP was more effective than MgATP or the nonhydrolyzable analogue adenyl-5'-yl imidodiphosphate. GTP and guanyl-5'-yl imidodiphosphate were less active than the corresponding adenine nucleotides. Activity in the presence of CHAPS and ATP was almost completely dependent on dithiothreitol; the A0.5 for dithiothreitol was significantly decreased by CHAPS alone and, to a greater extent, by CHAPS and ATP. To determine the site of action of ATP, CHAPS, and dithiothreitol, the enzymatic (S1) and binding components (B oligomer) were resolved by chromatography. The purified S1 subunit catalyzed the dithiothreitol-dependent hydrolysis of NAD; activity was enhanced by CHAPS but not ATP. The studies are consistent with the conclusion that adenine nucleotides, dithiothreitol, and CHAPS act on the toxin itself rather than on the substrate; adenine nucleotides appear to be involved in the activation of toxin but not the isolated catalytic unit.  相似文献   

9.
Three kinds of ATP analogues were synthesized. These ATP analogues can be classified into two conformations, i.e. syn and anti forms with respect to the N-glycosidic bond between adenine and ribose groups of ATP. 3'-O-(N-Methylanthraniloyl)-2-azidoadenosine 5'-triphosphate (MantN2(3)ATP) is recognized as the anti form, as ATP, and the other two, 3'-O-(N-methylanthraniloyl)-8-azidoadenosine 5'-triphosphate (MantN8(3)ATP) and 1,N6-etheno-8-azidoadenosine 5'-triphosphate (epsilon N8(3)ATP) are both syn forms. Mant and etheno groups are both fluorescent which allows detection of their binding to proteins. The photochemical binding of azido groups in ATP analogues to the myosin active site, examined in the presence and absence of ATP, showed that all the analogues bound to the site of myosin ATPase. These analogues also acted as substrates of the ATPase and were hydrolyzed in the active site, as judged by competitive inhibition of the ATPase and by their ATPase activities. Of these analogues, MantN2(3)ATP is very similar to ATP in divalent-cation dependence of its hydrolysis rate and in its ability to trap ADP in the active site with vanadate, while the other two are different from ATP in these respects. The photochemical binding sites of ATP analogues were localized by gel electrophoresis of trypsinized myosin ATPase with photocross-linked ATP analogues and/or by isolating the modified peptides. MantN2(3)ATP was found in the 23-kDa fragment which has a structure common to ATP-binding proteins, i.e. Gly-Xaa-Xaa-Gly-Xaa-Gly-Lys-Thr. Mant N8(3)ATP was found in a region of the 20-kDa fragment where actin is reported to attach.  相似文献   

10.
The effects of octylglucoside (OcGlc) micelles, which stimulate a Mg-specific ATPase activity in chloroplast coupling factor 1 [Pick, U. and Bassilian, S. (1982) Biochemistry, 21, 6144-6152], on the interactions of the enzyme with adenine nucleotides have been studied. 1. OcGlc specifically accelerates the binding and the release of ADP but not of ATP or adenosine 5'[beta, gamma-imido]triphosphate (AdoPP[NH]P) from the tight-sites. The binding affinity for ADP and for ATP is only slightly decreased (twofold) by the detergent. ATP competitively inhibits the binding of ADP and vice versa in the presence or absence of OcGlc. 2.OcGlc-induced inactivation of CF1-ATPase is correlated with the release of bound nucleotides. In the absence of medium nucleotides ADP X CF1 is rapidly inactivated while ATP X CF1 and AdoPP[NH]P X CF1 are slowly inactivated by OcGlc in parallel with the release of bound nucleotide. In contrast, low concentrations of either ATP or ADP in the medium effectively protect against OcGlc inactivation while AdoPP[NH]P, whose binding to CF1 is inhibited by OcGlc, is ineffective even at millimolar concentrations. The results suggest that the occupancy of the tight-sites protects the enzyme against OcGlc-induced inactivation. 3. Mg ions specifically inhibit the release of bound ADP and the OcGlc-induced inactivation of CF1. High concentrations of medium ATP and ADP (K50 = 100 microM) also inhibit the OcGlc-induced release of bound nucleotides in an EDTA medium. In contrast, in the absence of OcGlc, medium ADP and ATP accelerate the release of bound adenine nucleotides. 4. Mg-ATP in the presence of OcGlc stimulates the release of bound ADP from CF1. Bound ATP is neither released nor hydrolyzed at the tight-sites under these conditions where medium ATP is rapidly hydrolyzed. Mg-ADP stimulates the release of bound ADP only in the presence of inorganic phosphate or of phosphate analogs, e.g. arsenate, pyrophosphate or selenate. 5. It is suggested that: (a) ATP and ADP bind to the same tight-sites, but OcGlc activation specifically accelerates the exchange of bound ADP at the site. (b) CF1 contains low affinity adenine nucleotide binding sites which may be the catalytical sites and which influence the tight-sites by cooperative interactions. (c) Mg-ATP in the presence of OcGlc induces a conformational change at the catalytical site which accelerates the release of ADP from the tight-site. The implications of these results to the role of adenine nucleotides in the regulation and mechanism of ATP hydrolysis by CF1 are discussed.  相似文献   

11.
An adenine analog 8-[m-(m-fluorosulfonylbenzamido)benzylthio]adenine (FSB-adenine) reacts covalently with sheep heart phosphofructokinase. Under conditions optimal for allosteric kinetics the modified enzyme is less sensitive to inhibition by ATP and insensitive to activation by AMP, cyclic AMP, and ADP. The concentration of fructose-6-P necessary for half-maximal activity is markedly decreased, while the cooperativity to the same substrate is not changed under the same conditions. The modified enzyme is more stable at pH 6.5 when compared with the native enzyme. Changes in the allosteric kinetics of the enzyme are proportional to the extent of modification reaching maximal effect when 3.2 mol of the reagent were bound/mol of tetrameric enzyme. Affinity labeling of the enzyme by the adenine derivative does not affect significantly the catalytic site. This is evidenced by the demonstration that under assay conditions optimal for Michaelian kinetics neither the Km for ATP nor for fructose-6-P is significantly changed following chemical modification. Maximal activity of the modified enzyme was 60% of the native enzyme. ADP gives the best protection, while AMP gives less protection against modification by the reagent. ATP slows the rate of the reaction and causes a slight decrease in maximum binding of the reagent to the enzyme. Modification of the enzyme caused a marked reduction of AMP and ADP binding. The evidence indicates that the modified site is a nucleotide mono- and diphosphate activation site.  相似文献   

12.
J W Ogilvie 《Biochemistry》1985,24(2):317-321
The smallest enzymatically active form of rabbit muscle phosphofructokinase is a tetramer of four identical or nearly identical monomers. The enzyme is inhibited by ATP, and this inhibition by ATP is relieved by the activating adenine nucleotides adenosine cyclic 3',5'-phosphate, AMP, and ADP. Each monomer contains one binding site specific for the inhibitor ATP and another site specific for the activating adenine nucleotides. The enzyme can also be activated by covalently labeling the activating adenine nucleotide binding sites with the affinity label 5'-[p-(fluorosulfonyl)benzoyl]adenosine. These activator binding sites on the enzyme have been covalently labeled to various degrees, ranging from an average value of less than one label per tetramer to four labels per tetramer, and the free-energy coupling, delta Gxy, between the covalently bound affinity label and ATP binding at the inhibitory site was determined. For enzyme preparations containing four labels per tetramer, delta Gxy is approximately 1 kcal/mol at pH 6.95 and 25 degrees C. A very significant free-energy coupling is observed in those preparations containing an average of one label per tetramer and less, and the change in delta Gxy in going from native tetramers to ones containing an average of two labels per tetramer is twice as great as the change in delta Gxy observed in going from tetramers containing an average of two labels per tetramer to ones containing four labels per tetramer, suggesting that modification of the final two monomers in the tetramer contributes much less to the antagonistic effect on ATP binding than does modification of the first two monomers in the tetramer.  相似文献   

13.
L Larose  N McNicoll  H Ong  A De Léan 《Biochemistry》1991,30(37):8990-8995
Atrial natriuretic factor (ANF-R1) receptor is a 130-kDa protein that contains a cytoplasmic guanylate cyclase domain. We report that ATP interacts in an allosteric manner with the ANF-R1 receptor, resulting in reduced ANF binding and enhanced ANF-stimulated guanylate cyclase activity. The modulatory properties of various nucleotides indicate a preference for the adenine family with a rank order of potency of ATP greater than App(NH)p greater than or equal to ADP greater than or equal to AMP while cyclic and guanine nucleotides except GTP are inactive. The negative modulation by ATP of ANF binding is specific for the ANF-R1 receptor subtype since the amount of ANF bound by the guanylate cyclase uncoupled ANF-R2 subtype is increased in the presence of ATP. Furthermore, the effects of ATP on ANF-R1 receptor binding function are still observed with the affinity-purified ANF-R1 receptor, suggesting an allosteric binding site for ATP on the ANF-R1 receptor. In intact membranes, limited proteolysis of the ANF-R1 receptor with trypsin dose-dependently prevents the ATP-induced decrease in ANF binding concomitantly with the formation of a membrane-associated ANF-binding fragment of 70 kDa. These results confirm the direct modulatory role of ATP on hormone binding activity of ANF-R1 receptor and suggest that the nucleotide regulatory binding site is located in the intracellular domain vicinal to the protease-sensitive region.  相似文献   

14.
Lactate dehydrogenase (LDH) from the pig heart interacts with liposomes made of acidic phospholipids most effectively at low pH, close to the isoelectric point of the protein (pH = 5.5). This binding is not observed at neutral pH or high ionic strength. LDH-liposome complex formation requires an absence of nicotinamide adenine dinucleotides and adenine nucleotides in the interaction environment. Their presence limits the interaction of LDH with liposomes in a concentration-dependent manner. This phenomenon is not observed for pig skeletal muscle LDH. The heart LDH-liposome complexes formed in the absence of nicotinamide adenine dinucleotides and adenine nucleotides are stable after the addition of these substances even in millimolar concentrations. The LDH substrates and studied nucleotides that inhibit the interaction of pig heart LDH with acidic liposomes can be ordered according to their effectiveness as follows: NADH > NAD > ATP = ADP > AMP > pyruvate. The phosphorylated form of NAD (NADP), nonadenine nucleotides (GTP, CTP, UTP) and lactate are ineffective. Chemically cross-linked pig heart LDH, with a tetrameric structure stable at low pH, behaves analogously to the unmodified enzyme, which excludes the participation of the interfacing parts of subunits in the interaction with acidic phospholipids. The presented results indicate that in lowered pH conditions, the NADH-cofactor binding site of pig heart LDH is strongly involved in the interaction of the enzyme with acidic phospholipids. The contribution of the ATP/ADP binding site to this process can also be considered. In the case of pig skeletal muscle LDH, neither the cofactor binding site nor the subunit interfacing areas seem to be involved in the interaction.  相似文献   

15.
Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.  相似文献   

16.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The ATP substrate site of a second messenger-independent protein kinase of the type NII from porcine liver nuclei was mapped using a series of 30 ATP derivatives with modifications at the base, ribose or triphosphate moiety. Ki values for these derivatives were determined by competition with [gamma-32P]ATP; they range from 4 microM to 1.5 mM. For a comparison with data previously reported for the catalytic subunit of cAMP-dependent protein kinase I from rabbit skeletal muscle, the Ki values were transformed into delta delta values. These values are related to the Ki value of unsubstituted ATP and indicate the decrease of affinity caused by the different substitutions. With both enzymes the major binding affinity is derived from the interaction of the adenine base. The contributions of the two ribosyl OH groups are marginal and the triphosphate moiety interacts most strongly with its beta-phosphoryl group. Between the two enzymes the most striking differences, however, were observed for the specificity of the nucleobase interaction. While an unmodified N-6 amino group is required in the case of the cAMP-dependent protein kinase, the nuclear enzyme seems to tolerate extensive modification at this position, such as the introduction of a keto group or a bulky benzyl residue. Obviously, the ATP site of the nuclear kinase has an open cleft next to the N-6 of the adenine and binding of the adenine occurs by hydrophobic interaction without the formation of hydrogen bonds to any of the adenine nitrogens.  相似文献   

18.
Rape alcohol dehydrogenase is competitively inhibited with respect to NAD by nicotinamide, as well as by compounds containing adenine (adenine, adenosine, AMP, ADP, ATP). Adenine and adenosine are bound more firmly to the enzyme than nicotinamide. The two types of compound, as component parts of the NAD coenzyme, are bound to different sites on the enzyme. Adenine and adenosine compete for the adenine nucleotide bonding site, but they do not compete for the o-phenanthroline bonding site. Nicotinamide competes with o-phenanthroline for the binding site at which the metal is apparently present.  相似文献   

19.
8-Azido-adenosine 5'-triphosphate (n8(3)ATP) appeared to be a suitable photoaffinity label for the protein kinase dependent on adenosine 3':5'-monophosphate (cAMP). It competes with ATP for the high-affinity ATP site in the undissociated form of the kinase and in the phosphotransferase reaction catalyzed by the catalytic subunit. Furthermore, it is accepted as a substrate in the phosphotransfer reaction. n8(3)ATP incorporated into the holoenzyme is covalently bound irradiation. Protection experiments with ATP indicated that this covalent attachment occurs in the high-affinity ATP site of the enzyme. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate shows that n8(3)ATP is bound to the catalytic subunit. After irradiation the enzyme was dissociated by cAMP. Proportional to the incorporated [gamma-32P]n8(3)ATP, a loss in phosphotransferase activity was found. These results support our model that both ATP sites coincide with respect to their adenine binding part. Thus binding of the regulatory subunit to the catalytic subunit would then transform the low-affinity catalytically active ATP site into a high-affinity inactive site.  相似文献   

20.
The effects of ATP, ADP, and inorganic phosphate (Pi) on the gating of native sheep cardiac ryanodine receptor channels incorporated into planar phospholipid bilayers were investigated. We demonstrate that ATP and ADP can activate the channel by Ca2+-dependent and Ca2+-independent mechanisms. ATP and ADP appear to compete for the same site/s on the cardiac ryanodine receptor, and in the presence of cytosolic Ca2+ both agents tend to inactivate the channel at supramaximal concentrations. Our results reveal that ATP not only has a greater affinity for the adenine nucleotide site/s than ADP, but also has a greater efficacy. The EC50 value for channel activation is approximately 0.2 mM for ATP compared to 1.2 mM for ADP. Most interesting is the fact that, even in the presence of cytosolic Ca2+, ADP cannot activate the channel much above an open probability (Po) of 0.5, and therefore acts as a partial agonist at the adenine nucleotide binding site on the channel. We demonstrate that Pi also increases Po in a concentration and Ca2+-dependent manner, but unlike ATP and ADP, has no effect in the absence of activating cytosolic [Ca2+]. We demonstrate that Pi does not interact with the adenine nucleotide site/s but binds to a distinct domain on the channel to produce an increase in Po.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号