首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anthropogenic perturbations to the global nitrogen (N) cycle nowexceed those to any other major biogeochemical cycle on Earth, yet ourability to predict how ecosystems will respond to the rapidly changing Ncycle is still poor. While northern temperate forest ecosystems haveseen the greatest changes in N inputs from the atmosphere, other biomes,notably semi-arid and tropical regions of the globe, are nowexperiencing increases in N deposition. These systems are even less wellunderstood than temperate forests, and are likely to respond to excess Nin markedly different ways. Here, we present a new integratedterrestrial biophysics-biogeochemical process model, TerraFlux, and usethis model to test the relative importance of factors that may stronglyinfluence the productivity response of both humid tropical and semi-aridsystems to anthropogenic N deposition. These include hydrological lossesof dissolved inorganic and organic N, as well as multiple nutrientinteractions with deposited inorganic N along the hydrological pathway.Our results suggest that N-rich tropical forests may have reducedproductivity following excess N deposition. Our simulations of semi-aridsystems show increases in productivity following N inputs if wateravailability is sufficient and water losses are moderate. The mostimportant model controls over the carbon cycle response in eachsimulation were interactions that are not represented in the most commonterrestrial ecosystem models. These include parameters that control soilsolute transport and nutrient resorption by plants. Rather than attemptprognostic simulations, we use TerraFlux to highlight a variety ofecological and biogeochemical processes that are poorly understood butwhich appear central to understanding ecosystem response to excessN.  相似文献   

2.
In studies of nitrate leaching both experimenters and modellers experience problems arising from soil variability. Because of the small-scale heterogeneity that gives rise to mobile and immobile categories of water, both measurements and modelling are easiest in homogeneous sandy soils and most difficult in strongly structured clay soils. There are also parallels at plot and field scale in the problems caused to experimenters by log-normal distributions of nitrate concentrations and those caused to modellers by non-linearity in models. All researchers need to be aware that a reliable estimate of the mean from a set of measurements or a model may necessitate considerations of variances as well as means.  相似文献   

3.
Stream nitrogen (N) export and nitrate concentration were measured at 14 forested watersheds (GEOMON network) in the Czech Republic between 1994 and 2005. In the last several decades, emissions of sulfur (S) and N compounds have decreased throughout much of Europe. In the Czech Republic, atmospheric deposition of S has decreased substantially since the beginning of 1990s, whereas N deposition remains largely unchanged at most sites. The mean dissolved inorganic nitrogen (DIN) streamwater export ranged from 0.2 to 12.2 kg ha−1 y−1 at the GEOMON sites. Despite decades of elevated N deposition, 44–98% of DIN inputs to these watersheds were retained or denitrified, and many watersheds showed seasonal variation in nitrate concentrations. Dissolved organic N export was quantified in 1 year only and ranged from 0.05 to 3.5 kg ha−1 y−1. Spatial variability in DIN export among watersheds was best explained by spatial variability in average acidic deposition, particularly S deposition (R 2 = 0.81, P < 0.001); DIN input and forest floor carbon:nitrogen (C/N) also provided significant explanatory power. DIN export was strongly influenced by the forest floor C/N ratio and depth of the forest floor soils (R 2 = 0.72, P < 0.001). The only variable that predicted variations in forest floor C/N (R 2 = 0.32, P < 0.05) among watersheds was S deposition. Forest floor depth was also related to deposition variables, with S deposition providing the most explanatory power (R 2 = 0.50, P < 0.01). Variation in forest floor depth was also associated with climatic factors (precipitation and temperature). Temporal variability in DIN export was primarily associated with changes in acidic deposition over time; S deposition explained 41% of variability in DIN exports among all watersheds and years. Extensive acidification of forested watersheds was associated with the extraordinarily high S inputs to much of the Czech Republic during earlier decades. We hypothesize that recovery from acidification has led to improved tree health as well as enhanced microbial activity in the forest floor. As these watersheds move into a new regime with dramatically lower sulfur inputs, we expect continued declines in nitrate output.  相似文献   

4.
Amendments with glucose significantly reduced the amount of nitrate leached from a sandy soil amended with nitrate. The decrease was most likely caused by immobilisation of the nitrate into microbial cells. Populations of ciliates and flagellates and amoebae, but not nematodes, increased 7–14 days following glucose amendments. Mineralisation of the immobilised nitrate occurred during this period. Some of the mineralised nitrogen appeared to be available to ryegrass plants only if the roots exploited most of the soil during the period of maximum predator activity. After 28 days, 44% of the organic N remaining in the soil after leaching was taken up by the plants. The difference developed over the last 2 weeks when amoebal populations were large.  相似文献   

5.
采用密闭室法和离子交换树脂袋法,研究了科尔沁沙质草地不同处理(水添加、氮添加、水氮添加)氧挥发的损失量和硝态氮的淋溶量.结果表明:氮添加处理和水氮添加处理显著促进了氨挥发(P<0.05),最大氨挥发速率显著高于对照;氮添加处理和水氮添加处理的氨挥发累积量为111.80和148.64 mg·m-2,分别占氮添加量的1.1%和1.5%;水氮同时添加条件下,氨挥发累计量显著高于氨添加处理(P<0.05),水添加处理和对照相比没有显著差异(P>0.05);水氮添加处理显著增加了土壤深度20 cm处的硝态氮淋溶量(P<0.05),氮添加处理和水氮添加处理的硝态氮淋溶量分别是对照的1.96和4.22倍,然而在土壤深度40 cm处各处理硝态氮淋溶量差异不显著(P>0.05);可见,氮添加和水氮添加均促进了土壤的氧挥发,对硝态氮的淋溶没有显著影响.  相似文献   

6.
Transformations and fluxes of N were examined in three forested sites located along a gradient of soil texture in the coastal forests of the Waquoit Bay watershed on Cape Cod. Total N leaching losses to ground water were 0.5 kg ha-1 yr-1 in the loamy sand site and 1.5 kg ha-1 yr-1 in the fine sand site. Leaching loss to groundwater was not measured in the coarse sand site due to the prohibitive depth of the water table but total N leaching loss to 1m depth in the mineral soil was 3.9 kg ha-1 yr-1. DON accounted for most of the leaching losses below the rooting zone (77–89%) and through the soil profile to ground water (60%–80%). Differences in DON retention capacity of the mineral soil in the sites along the soil texture gradient were most likely related to changes in mineral soil particle surface area and percolation rates associated with soil texture. Forests of the watershed functioned as a sink for inorganic N deposited on the surface of the watershed in wet and dry deposition but a source of dissolved organic N to ground water and adjoining coastal ecosystems.  相似文献   

7.
Nitrogen (N) is a key nutrient that shapes cycles of other essential elements in forests, including calcium (Ca). When N availability exceeds ecosystem demands, excess N can stimulate Ca leaching and deplete Ca from soils. Over the long term, these processes may alter the proportion of available Ca that is derived from atmospheric deposition vs. bedrock weathering, which has fundamental consequences for ecosystem properties and nutrient supply. We evaluated how landscape variation in soil N, reflecting long‐term legacies of biological N fixation, influenced plant and soil Ca availability and ecosystem Ca sources across 22 temperate forests in Oregon. We also examined interactions between soil N and bedrock Ca using soil N gradients on contrasting basaltic vs. sedimentary bedrock that differed 17‐fold in underlying Ca content. We found that low‐N forests on Ca‐rich basaltic bedrock relied strongly on Ca from weathering, but that soil N enrichment depleted readily weatherable mineral Ca and shifted forest reliance toward atmospheric Ca. Forests on Ca‐poor sedimentary bedrock relied more consistently on atmospheric Ca across all levels of soil N enrichment. The broad importance of atmospheric Ca was unexpected given active regional uplift and erosion that are thought to rejuvenate weathering supply of soil minerals. Despite different Ca sources to forests on basaltic vs. sedimentary bedrock, we observed consistent declines in plant and soil Ca availability with increasing N, regardless of the Ca content of underlying bedrock. Thus, traditional measures of Ca availability in foliage and soil exchangeable pools may poorly reflect long‐term Ca sources that sustain soil fertility. We conclude that long‐term soil N enrichment can deplete available Ca and cause forests to rely increasingly on Ca from atmospheric deposition, which may limit ecosystem Ca supply in an increasingly N‐rich world.  相似文献   

8.
The deposition of nitrogen (N) is high in subtropical forest in South China and it is expected to increase further in the coming decades. To assess effects of increasing deposition on N cycling, we investigated the current N status of two selected 40–45-year-old masson pine-dominated Chinese subtropical forest stands at Tieshanping (TSP, near Chongqing City) and Caijiatang (CJT in Shaoshan, Hunan province), and explored the applicability of several indicators for N status and leaching, suggested for temperate and boreal forest ecosystems. Current atmospheric N deposition to the systems is from 25 to 49 kg ha−1 year−1. The concentration of total N in the upper 15 cm of the soil is from as low as 0.05% in the B2 horizon to as high as 0.53% in the O/A horizon. The concentration of organic carbon (C) varies from 0.74 (B2) to 9.54% (O/A). Pools of N in the upper 15 cm of the soils range from 1460 to 2290 kg N ha−1, where 25–55% of the N pool is in the O/A horizon (upper 3 cm of the soil). Due to a lack of a well-developed continuous O horizon (forest floor), the C/N ratio of this layer cannot be used as an indicator for the N status, as is commonly done in temperate and boreal forests. The net N mineralization rate (mg N g−1 C year−1) in individual horizons correlates significantly with the C/N ratio, which is from as high as 18.2 in the O/A horizon to as low as 11.2 in the B2 horizon. The N2O emission flux from soil is significantly correlated with the KCl extractable NH4+–N in the O/A horizon and with the net nitrification in the upper 15 cm of the soil. However, the spatial and temporal variation of the N2O emission rate is high and rates are small and often difficult to detect in the field. The soil flux density of mineral N, defined as the sum of the throughfall N input rate and the rate of in situ net N mineralization in the upper 15 cm of the soil, i.e., the combination of deposition input and the N status of the system, explains the NO3 leaching potential at 30 cm soil depth best. The seasonality of stream water N concentration at TSP and CJT is climatic and hydrologically controlled, with highest values commonly occurring in the wet growing season and lowest in the dry dormant season. This is different from temperate forest ecosystems, where N saturation is indicated by elevated NO3 leaching in stream water during summer.  相似文献   

9.
Rapid urbanization has greatly altered nitrogen (N) cycling from regional to global scales. Compared to natural forests, urban forests receive much more external N inputs with distinctive abundances of stable N isotope (δ15N). However, the large-scale pattern of soil δ15N and its imprint on plant δ15N remain less well understood in urban forests. By collecting topsoil (0–20 cm) and leaf samples from urban forest patches in nine large cities across a north–south transect in eastern China, we analyzed the latitudinal trends of topsoil C:N ratio and δ15N as well as the correlations between tree leaf δ15N and topsoil δ15N. We further explored the spatial variation of topsoil δ15N explained by corresponding climatic, edaphic, vegetation-associated, and anthropogenic drivers. Our results showed a significant increase of topsoil C:N ratio towards higher latitudes, suggesting lower N availability at higher latitudes. Topsoil δ15N also increased significantly at higher latitudes, being opposite to the latitudinal trend of soil N availability. The latitudinal trend of topsoil δ15N was mainly explained by mean annual temperature, mean annual precipitation, and atmospheric deposition of both ammonium and nitrate. Consequently, tree leaf δ15N showed significant positive correlations with topsoil δ15N across all sampled plant species and functional types. Our findings reveal a distinctive latitudinal trend of δ15N in urban forests and highlight an important role of anthropogenic N sources in shaping the large-scale pattern of urban forest 15N signature.  相似文献   

10.
绿洲农田氮素积累与淋溶研究述评   总被引:2,自引:0,他引:2  
杨荣  苏永中  王雪峰 《生态学报》2012,32(4):1308-1317
作物对氮素的吸收利用及氮素在土壤中的积累和运移,制约着绿洲农田生产力并对农田环境造成影响,是绿洲农田生态系统可持续发展和绿洲稳定性研究的一个重要方面。针对农田氮素积累和淋溶这一绿洲资源消耗量增加、耕作方式粗放结果下的环境问题,对其特征及引发的环境效应进行了详细阐述,并从不同的角度综述了缓减绿洲氮素淋失及环境污染的对策。指出在未来还需加强绿洲地下水氮污染调查及农田氮素积累和淋溶现状的区域评价,并针对一些在绿洲大面积推广的农田管理技术开展其对农田氮素积累和淋溶影响的研究,并强调人文因素在绿洲农田氮素积累与淋溶调控中的重要性。  相似文献   

11.
The NITREX project, which encompasses seven ecosystem-scale experiments in coniferous forests at the plot or catchment level in northwestern Europe, investigates the effect of atmospheric nitrogen (N) deposition in coniferous forests. The common factor in all of the experiments is the experimentally controlled change in N input over a period of 4–5 years. Results indicate that the status and dynamics of the forest floor are key components in determining the response of forests to altered N inputs. An empirical relationship between the carbon–nitrogen (C/N) ratio of the forest floor and retention of incoming N provides a simply measured tool through which the likely timing and consequences of changes in atmospheric N deposition for fresh waters may be predicted. In the terrestrial ecosystem, a 50% increase in tree growth is observed following the experimental reduction of N and sulfur inputs in a highly N-saturated site, illustrating the damaging effects of acidifying pollutants to tree health in some locations. Few biotic responses to the experimental treatments were observed in other NITREX sites, but the rapid response of water quality to changes in N deposition, and the link to acidification in sensitive areas, highlight the need for N-emission controls, irrespective of the long-term effects on tree health. The observed changes in ecosystem function in response to the experimental treatments have been considered within the framework of the current critical-load approach and thus contribute to the formulation of environmental policy.  相似文献   

12.
13.
An estimate of net carbon (C) pool changes and long‐term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km × 16 km grid (level I plots). C pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long‐term C pool changes accounting for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils, using measured data only (level II plots) or a combination of measurements and model calculations (level I plots). Net C sequestration by forests in Europe (both trees and soil) was estimated at 0.117 Gton yr?1, with the C sequestration in stem wood being approximately four times as high (0.094 Gton yr?1) as the C sequestration in the soil (0.023 Gton yr?1). The European average impact of an additional N input on the net C sequestration was estimated at approximately 25 kg C kg?1 N for both tree wood and soil. The contribution of an average additional N deposition on European forests of 2.8 kg ha?1 yr?1 in the period 1960–2000 was estimated at 0.0118 Gton yr?1, being equal to 10% of the net C sequestration in both trees and soil in that period (0.117 Gton yr?1). The C sequestration in trees increased from Northern to Central Europe, whereas the C sequestration in soil was high in Central Europe and low in Northern and Southern Europe. The result of this study implies that the impact of forest management on tree growth is most important in explaining the C pool changes in European forests.  相似文献   

14.
In regions dominated by agricultural activities, nitrogen (N) is recognized as a major pollutant in aquatic environments. In north‐western Europe, afforestation of agricultural land is part of a strategy to improve water quality. In Denmark, former arable land has been afforested during the past 40–50 years. This study evaluated the effect of afforestation of former arable land on nitrate leaching, based on three afforestation chronosequences. Precipitation, canopy throughfall and soil water were collected and soil moisture was monitored at two Danish locations, Vestskoven (nutrient‐rich, medium deposition) and Gejlvang (nutrient‐poor, high deposition). Afforestation was performed using Norway spruce [Picea abies (Karst.) L.] and common oak (Quercus robur L.) at Vestskoven and Norway spruce at Gejlvang. The results suggest that afforestation of former arable land initially leads to lower nitrate leaching than that occurring under the former agricultural land use, and largely below the standard of 50 mg NO3 L−1 for groundwater to be utilized as drinking water. Nitrate concentrations became almost negligible in forest stands of 5–20 years of age. However, after canopy closure (>20 years) nitrate concentrations below the root zone and nitrate leaching tended to increase. This was attributed to increased N deposition with increasing canopy development and decreased N demand once the most N‐rich biomass compartments had been built up. Nitrate leaching started to increase at a throughfall deposition level of about 10 kg N ha−1 yr−1. Compared with nutrient‐poor sandy soils, nutrient‐rich clayey soils appeared more vulnerable to disturbance of the N cycle and to increased N deposition, leading to N saturation and enhanced nitrate leaching. In approximately the first 35 years after afforestation, nitrate leaching below the root zone was generally higher below oak than below Norway spruce.  相似文献   

15.
Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to N deposition in these biomes remains elusive. By a meta-analysis of 2426-single and 161-paired observations from 89 published 15 N pool dilution and tracing studies, we found that gross N mineralization (GNM), immobilization of ammonium ( I NH 4 ) and nitrate ( I NO 3 ), and dissimilatory nitrate reduction to ammonium (DNRA) were significantly higher in tropical forests than in subtropical forests. Soil N cycle was conservative in tropical forests with ratios of gross nitrification (GN) to I NH 4 (GN/ I NH 4 ) and of soil nitrate to ammonium (NO3/NH4+) less than one, but was leaky in subtropical forests with GN/ I NH 4 and NO3/NH4+ higher than one. Soil NH4+ dynamics were mainly controlled by soil substrate (e.g., total N), but climatic factors (e.g., precipitation and/or temperature) were more important in controlling soil NO3 dynamics. Soil texture played a role, as GNM and I NH 4 were positively correlated with silt and clay contents, while I NO 3 and DNRA were positively correlated with sand and clay contents, respectively. The soil N cycle was more sensitive to N deposition in tropical forests than in subtropical forests. Nitrogen deposition leads to a leaky N cycle in tropical forests, as evidenced by the increase in GN/ I NH 4 , NO3/NH4+, and nitrous oxide emissions and the decrease in I NO 3 and DNRA, mainly due to the decrease in soil microbial biomass and pH. Dominant tree species can also influence soil N cycle pattern, which has changed from conservative in deciduous forests to leaky in coniferous forests. We provide global evidence that tropical, but not subtropical, forests are characterized by soil N dynamics sustaining N availability and that N deposition inhibits soil N retention and stimulates N losses in these biomes.  相似文献   

16.
Ectomycorrhizal (ECM) functional traits related to nutrient acquisition are impacted by nitrogen (N) deposition. However, less is known about whether these nutrient-acquisition traits associated with roots and hyphae differentially respond to increased N deposition in ECM-dominated forests with different initial N status. We conducted a chronic N addition experiment (25 kg N ha−1 year−1) in two ECM-dominated forests with contrasting initial N status, that is, a Pinus armandii forest (with relatively low N availability) and a Picea asperata forest (with relatively high N availability), to assess nutrient-mining and nutrient-foraging strategies associated with roots and hyphae under N addition. We show that nutrient-acquisition strategies of roots and hyphae differently respond to increased N addition. Root nutrient-acquisition strategies showed a consistent response to N addition, regardless of initial forest nutrient status, shifting from organic N mining toward inorganic N foraging. In contrast, the hyphal nutrient-acquisition strategy showed diverse responses to N addition depending on initial forest N status. In the Pinus armandii forest, trees increased belowground carbon (C) allocation to ECM fungi thus enhancing hyphal N-mining capacity under increased N availability. By comparison, in the Picea asperata forest, ECM fungi enhanced both capacities of P foraging and P mining in response to N-induced P limitation. In conclusion, our results demonstrate that ECM fungal hyphae exhibit greater plasticity in nutrient-mining and nutrient-foraging strategies than roots do in response to changes of nutrient status induced by N deposition. This study highlights the importance of ECM associations in tree acclimation and forest function stability under changing environments.  相似文献   

17.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

18.
In a 2-year field experiment conducted on a Gleyic Luvisol in Stuttgart-Hohenheim one experimental and nine commercial maize cultivars were compared for their ability to utilize soil nitrate and to reduce related losses of nitrate through leaching. Soil nitrate was monitored periodically in CaCl2 extracts and in suction cup water. Nitrate concentrations in suction water were generally higher than in CaCl2 extracts. Both methods revealed that all cultivars examined were able to extract nitrate down to a soil depth of at least 120 cm (1988 season) or 150 cm (1987 season). Significant differences among the cultivars existed in nitrate depletion particularly in the subsoil. At harvest, residual nitrate in the upper 150 cm of the profile ranged from 73–110 kg N ha–1 in 1987 and from 59–119 kg N ha–1 in 1988. Residual nitrate was closely correlated with nitrate losses by leaching because water infiltration at 120 cm soil depth started 4 weeks after harvest (1987) or immediately after harvest (1988) and continued until early summer of the following year. The calculated amount of nitrate lost by leaching was strongly influenced by the method of calculation. During the winter of 1987/88 nitrate leaching ranged from 57–84 kg N ha–1 (suction cups) and 40–55 kg N ha–1 (CaCl2 extracts), respectively. The corresponding values for the winter of 1988/89 were 47–79 and 20–39 kg N ha–1, respectively. ei]Section editor: B E Clothier  相似文献   

19.
cNR, cytosolic nitrate reductase
PM-NR, plasma membrane-bound nitrate reductase

Activities of plasma membrane-bound nitrate reductase (PM-NR) and cytosolic nitrate reductase (cNR) in tobacco (Nicotiana tabacum L. cv. Samsun) are regulated differently, depending upon the nitrate supply to the culture medium (in sand culture). The cNR activity of roots was higher at low nitrate concentrations with the maximum at 5 mM nitrate supply and declined to low values beyond 5 mM . In contrast, the PM-NR activity of roots increased with higher nitrate concentrations with the maximum at 25 mM nitrate and clearly decreased only at 40 mM . This high PM-NR activity correlated with a low growth rate and might be one of the responses to excess nitrate. Internal nitrate and total nitrogen content of the tissues, however, showed a relative minimum in shoots and in roots of between 15 and 25 mM external nitrate. With declining PM-NR activities beyond 25 mM external nitrate, the nitrate content in the tissue increased indicating an inverse relationship between tissue nitrate content and root PM-NR activity. In leaves both NR activities (cNR and PM-NR) correlated with the internal nitrate content, but with a different response at low nitrate.  相似文献   

20.
Borken  W.  Xu  Y.J.  Beese  F. 《Plant and Soil》2004,258(1):121-134
Fertilization of nutrient-depleted and degraded forest soils may be required to sustain utilization of forests. In some European countries, the application of composts may now be an alternative to the application of inorganic fertilizers because commercial compost production has increased and compost quality has been improved. There is, however, concern that compost amendments may cause increased leaching of nitrogen, trace metals and toxic organic compounds to groundwater. The objective of this study was to assess the risk of ammonium (NH4 +), nitrate (NO3 ) and dissolved organic nitrogen (DON) leaching following a single compost application to silty and sandy soils in mature beech (Fagus sylvatica L.), pine (Pinus silvestris L.) and spruce (Picea abies Karst.) forests at Solling and Unterlüß in Lower Saxony, Germany. Mature compost from separately collected organic household waste was applied to the soil surface at a rate of 6.3 kg m–2 in the summer of 1997 and changes in NH4 +, NO3 and DON concentrations in throughfall and soil water at 10 and 100 cm soil depths were determined for 32 months. The spruce forests had the highest N inputs by throughfall water and the highest N outputs in both the control and compost plots compared with the pine and beech forests. Overall, the differences in total N outputs at 100 cm soil depth between the control and compost plots ranged between 0.3 and 11.2 g N m–2 for the entire 32-month period. The major leaching of these amounts occurred during the first 17 months after compost amendments, but there was no significant difference in total N outputs (–0.2 to 1.8 g N m–2) between the control and compost plots during the remaining 15 months. Most of the mineral soils acted as a significant sink for NO3 and DON as shown by a reduction of their outputs from 10 to 100 cm depth. Based on these results, we conclude that application of mature compost with high inorganic N contents could diminish the groundwater quality in the first months after the amendments. A partial, moderate application of mature compost with low inorganic N content to nutrient depleted forest soils can minimize the risk of NO3 leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号