首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This brief review considers the potential role of melatonin in the processes of aging, the prolongation of life span and health in the aged. Studies completed to date generally suggest that exogenously administered melatonin may serve to extend life span in invertebrates, but evidence supporting this conclusion in mammals is less compelling. Thus, any conclusion regarding a role for melatonin in extending normal longevity, particularly in mammals, would be premature. With regard to deferring the signs of chemically-induced neurodegenerative conditions in experimental animals, the data are remarkably strong and there is a modicum of evidence that in humans with debilitating diseases melatonin may have some beneficial actions. Indeed, this should be one focus of future research since as the number of elderly increases in the population, the frequency of costly age-related diseases will become increasingly burdensome to both the patient and to society as a whole.  相似文献   

2.
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.  相似文献   

3.
The yeast Saccharomyces cerevisiae has a finite life span that is measured by the number of daughter cells an individual produces. The 20 genes known to determine yeast life span appear to function in more than one pathway, implicating a variety of physiological processes in yeast longevity. Less attention has been focused on environmental effects on yeast aging. We have examined the role that nutritional status plays in determining yeast life span. Reduction of the glucose concentration in the medium led to an increase in life span and to a delay in appearance of an aging phenotype. The increase in life span was the more extensive the lower the glucose levels. Life extension was also elicited by decreasing the amino acids content of the medium. This suggests that it is the decline in calories and not a particular nutrient that is responsible, in striking similarity to the effect on aging of caloric restriction in mammals. The caloric restriction effect did not require the induction of the retrograde response pathway, which signals the functional status of the mitochondrion and determines longevity. Furthermore, deletion of RTG3, a downstream mediator in this pathway, and caloric restriction had an additive effect, resulting in the largest increase (123%) in longevity described thus far in yeast. Thus, retrograde response and caloric restriction operate along distinct pathways in determining yeast longevity. These pathways may be exclusive, at least in part. This provides evidence for multiple mechanisms of metabolic control in yeast aging. Inasmuch as caloric restriction lowers blood glucose levels, this study raises the possibility that reduced glucose alters aging at the cellular level in mammals.  相似文献   

4.
Melatonin, the chief hormone of the pineal gland, is produced and secreted into the blood in a circadian manner with maximal production always occurring during the dark phase of the light:dark cycle. Whereas the 24h rhythm of melatonin production is very robust in young animals including humans, the cycle deteriorates during ageing. The rhythm of melatonin can be substantially preserved during ageing by restricting the food intake of experimental animals; this same treatment increases the life span of the animals. The exogenous administration of melatonin to non-food restricted animals also reportedly increases their survival. Moreover, melatonin has been shown to have immunoenhancing effects and oncostatic properties. The implication of these studies is that melatonin may have both direct and indirect beneficial effects in delaying ageing processes or it may retard the development of processes (e.g., immunodeficiency and tumor growth) which contribute to a reduced life span.  相似文献   

5.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood.  相似文献   

6.
The main objective of this review is to provide an appraisal of the current status of the relationship between energy intake and the life span of animals. The concept that a reduction in food intake, or caloric restriction (CR), retards the aging process, delays the age-associated decline in physiological fitness, and extends the life span of organisms of diverse phylogenetic groups is one of the leading paradigms in gerontology. However, emerging evidence disputes some of the primary tenets of this conception. One disparity is that the CR-related increase in longevity is not universal and may not even be shared among different strains of the same species. A further misgiving is that the control animals, fed ad libitum (AL), become overweight and prone to early onset of diseases and death, and thus may not be the ideal control animals for studies concerned with comparisons of longevity. Reexamination of body weight and longevity data from a study involving over 60,000 mice and rats, conducted by a National Institute on Aging-sponsored project, suggests that CR-related increase in life span of specific genotypes is directly related to the gain in body weight under the AL feeding regimen. Additionally, CR in mammals and “dietary restriction” in organisms such as Drosophila are dissimilar phenomena, albeit they are often presented to be the very same. The latter involves a reduction in yeast rather than caloric intake, which is inconsistent with the notion of a common, conserved mechanism of CR action in different species. Although specific mechanisms by which CR affects longevity are not well understood, existing evidence supports the view that CR increases the life span of those particular genotypes that develop energy imbalance owing to AL feeding. In such groups, CR lowers body temperature, rate of metabolism, and oxidant production and retards the age-related pro-oxidizing shift in the redox state.  相似文献   

7.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood. (Chronobiology International, 17(5), 599–612, 2000)  相似文献   

8.
The pineal secretory product, melatonin, is a potent, endogenous hydroxyl radical (HO.) scavenger. When melatonin was incubated in different in vitro cell-free HO.-generating systems, a novel melatonin adduct was formed. The molecular weight of this new compound is 248. Its structure was found to be cyclic 3-hydroxymelatonin (3-OHM). A proposed reaction pathway suggests that 3-OHM is the footprint product of the interaction between melatonin with HO. 3-OHM was also detected in the urine of both rats and humans. This urinary metabolite is identical to the compound generated in the in vitro chemical reaction between HO. and melatonin. This provides direct evidence that melatonin, under physiological conditions, functions as an antioxidant to detoxify the most reactive and cytotoxic endogenous HO. When exogenous melatonin was administered to young rats, urinary 3-OHM levels increased significantly in the treated rats compared to those in controls. This indicates that even in young animals there is insufficient endogenously produced melatonin to detoxify the basal levels of the toxic HO. The accumulated damage induced by the escaped HO. that results when the HO. avoids detoxification over the course of a life time may directly or indirectly accelerate aging and aging-related diseases.  相似文献   

9.

Background

Senescence has been widely detected among mammals, but its importance to fitness in wild populations remains controversial. According to evolutionary theories, senescence occurs at an age when selection is relatively weak, which in mammals can be predicted by adult survival rates. However, a recent analysis of senescence rates found more age-dependent mortalities in natural populations of longer lived mammal species. This has important implications to ageing research and for understanding the ecological relevance of senescence, yet so far these have not been widely appreciated. We re-address this question by comparing the mean and maximum life span of 125 mammal species. Specifically, we test the hypothesis that senescence occurs at a younger age relative to the mean natural life span in longer lived species.

Methodology/Principal Findings

We show, using phylogenetically-informed generalised least squares models, a significant log-log relationship between mean life span, as calculated from estimates of adult survival for natural populations, and maximum recorded life span among mammals (R2 = 0.57, p<0.0001). This provides further support for a key prediction of evolutionary theories of ageing. The slope of this relationship (0.353±0.052 s.e.m.), however, indicated that mammals with higher survival rates have a mean life span representing a greater fraction of their potential maximum life span: the ratio of maximum to mean life span decreased significantly from >10 in short-lived to ∼1.5 in long-lived mammal species.

Conclusions/Significance

We interpret the ratio of maximum to mean life span to be an index of the likelihood an individual will experience senescence, which largely determines maximum life span. Our results suggest that senescence occurs at an earlier age relative to the mean life span, and therefore is experienced by more individuals and remains under selection pressure, in long- compared to short-lived mammals. A minimum rate of somatic degradation may ultimately limit the natural life span of mammals. Our results also indicate that senescence and modulating factors like oxidative stress are increasingly important to the fitness of longer lived mammals (and vice versa).  相似文献   

10.
Insects as novel models for research in chronobiology   总被引:2,自引:0,他引:2  
D K Hayes 《Chronobiologia》1989,16(4):417-420
A need exists for novel models for chronopharmacological research. Insects could serve in this capacity since they are relatively inexpensive, short-lived and acceptable to the public. With the cooperation of Franz Halberg, tests which demonstrated that this was feasible were undertaken over an about 10 year span. Specifically, life span was shown to be different in different photoperiodic regimens for the codling moth and the face fly. Evidence was also found for a circaseptan rhythm as well as an about 3-day rhythm in the response to the photoperiodic shifts. These results are consistent with those reported by F. Halberg and others in mammals and a unicellular plant. The finding, in collaboration with F. Halberg and others, of a rhythm in melatonin in the heads of face flies suggests that biochemical as well as behavioural analogies between insects and other animals can be drawn when insects are used as models for research in chronopharmacology.  相似文献   

11.
内源褪黑素对人类和其他哺乳动物的节律行为具有调控功能。生物节律是自然进化赋予生命的基本特征之一,生物体的生命活动受到生物节律的控制与影响。在哺乳动物中,节律调控中心是松果体,其主要功能是合成和分泌褪黑素。褪黑素广泛参与生物体节律行为的调节,本文从褪黑素的产生和作用机制,分别阐述褪黑素对昼夜节律行为和多种年节律行为的调控作用,同时明确褪黑素与生物钟及神经内分泌系统的直接作用和反馈互动的复杂集合,进一步揭示褪黑素调控生物节律的重要作用,以期为褪黑素的基础研究以及未来探究生物体的生物钟内源性发生机制提供参考。  相似文献   

12.
Calorie restriction (CR) extends life span in a wide variety of species. Recent studies suggest that an increase in mitochondrial metabolism mediates CR-induced life span extension. Here we present evidence that Lat1 (dihydrolipoamide acetyltransferase), the E2 component of the mitochondrial pyruvate dehydrogenase complex, is a novel metabolic longevity factor in the CR pathway. Deleting the LAT1 gene abolishes life span extension induced by CR. Overexpressing Lat1 extends life span, and this life span extension is not further increased by CR. Similar to CR, life span extension by Lat1 overexpression largely requires mitochondrial respiration, indicating that mitochondrial metabolism plays an important role in CR. Interestingly, Lat1 overexpression does not require the Sir2 family to extend life span, suggesting that Lat1 mediates a branch of the CR pathway that functions in parallel to the Sir2 family. Lat1 is also a limiting longevity factor in nondividing cells in that overexpressing Lat1 extends cell survival during prolonged culture at stationary phase. Our studies suggest that Lat1 overexpression extends life span by increasing metabolic fitness of the cell. CR may therefore also extend life span and ameliorate age-associated diseases by increasing metabolic fitness through regulating central metabolic enzymes.  相似文献   

13.
Recent evidence points to a strong relationship between increased mitochondrial biogenesis and increased survival in eukaryotes. Branched-chain amino acids (BCAAs) have been shown to extend chronological life span in yeast. However, the role of these amino acids in mitochondrial biogenesis and longevity in mammals is unknown. Here, we show that a BCAA-enriched mixture (BCAAem) increased the average life span of mice. BCAAem supplementation increased mitochondrial biogenesis and sirtuin 1 expression in primary cardiac and skeletal myocytes and in cardiac and skeletal muscle, but not in adipose tissue and liver of middle-aged mice, and this was accompanied by enhanced physical endurance. Moreover, the reactive oxygen species (ROS) defense system genes were upregulated, and ROS production was reduced by BCAAem supplementation. All of the BCAAem-mediated effects were strongly attenuated in endothelial nitric oxide synthase null mutant mice. These data reveal an important antiaging role of BCAAs mediated by mitochondrial biogenesis in mammals.  相似文献   

14.
Sir2 blocks extreme life-span extension   总被引:18,自引:0,他引:18  
Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological life-span extension. Inactivation of Sir2 causes uptake and catabolism of ethanol and upregulation of many stress-resistance and sporulation genes. These changes while sufficient to extend chronological life span in wild-type yeast require severe calorie restriction or additional mutations to extend life span of sir2Delta mutants. Our results demonstrate that effects of SIR2 on chronological life span are opposite to replicatve life span and suggest that the relevant activities of Sir2-like deacetylases may also be complex in higher eukaryotes.  相似文献   

15.
Melatonin: A potential regulator of plant growth and development?   总被引:5,自引:0,他引:5  
Summary Recent research has reported the presence of melatonin (N-acetyl-5-methoxytryptamine), a mammalian indoleamine neurohormone, in higher plants, indicating that melatonin may be an important metabolic regulator that has been highly conserved across biological kingdoms. Melatonin is synthesized from tryptophan in the mammalian pineal gland and a similar biosynthetic pathway was recently described in St. John's wort shoot tissues, wherein radiolabel from tryptophan was recovered in serotonin and melatonin as well as indoleacetic acid. There is growing information describing melatonin control of physiological processes in mammals, yeast, and bacteria, including diurnal responses, detoxification of free radicals, and environmental adaptations. However, at the current time, there is no known specific role for melatonin in plant physiology. Alterations in melatonin concentrations in plant tissues have been shown to affect root development, mitosis, and mitotic spindle formation. The recent advancements in melatonin research in plants and some directions for important areas of future research are reviewed in this article.  相似文献   

16.
Jia K  Levine B 《Autophagy》2007,3(6):597-599
Dietary restriction extends life span in diverse species including Caenorhabditis elegans. However, the downstream cellular targets regulated by dietary restriction are largely unknown. Autophagy, an evolutionary conserved lysosomal degradation pathway, is induced under starvation conditions and regulates life span in insulin signaling C. elegans mutants. We now report that two essential autophagy genes (bec-1 and Ce-atg7) are required for the longevity phenotype of the C. elegans dietary restriction mutant (eat-2(ad1113) animals. Thus, we propose that autophagy mediates the effect, not only of insulin signaling, but also of dietary restriction on the regulation of C. elegans life span. Since autophagy and longevity control are highly conserved from C. elegans to mammals, a similar role for autophagy in dietary restriction-mediated life span extension may also exist in mammals.  相似文献   

17.
L Iu Prokhorov 《Ontogenez》1999,30(3):176-187
The maximum life span of mammals is known to be proportional to the pregnancy duration and to the age at puberty. We found that the maximum life span of mammals was also proportional to the number of cell doublings, and inversely proportional to the rate of duplication of these cells, during embryogenesis or for the time from zygote formation to growth termination. We found also that the life span of "stationary phase aging" transformed Chinese hamster cells (time from subcultivation until culture "death", i.e., until the moment when the number of live cells is less than 10% of their number at saturation density) was proportional to the duration of their growth and number of cell doublings during the period from subcultivation to saturation density, and inversely proportional to the rate of cell culture duplication during the same period. The dependencies for cell cultures and mammals proved to be analogous to each other. An approximately twofold decrease in the cell duplication rate, as a result of a decrease of the growth medium temperature from 37 to 27 degrees C or the introduction of ethanol to a final concentration 2%, increased the life span of "stationary phase aging" cultures more than twofold. The data obtained suggest that influences resulting in optimized delay of the rate of cell duplication, and correspondingly the mean rate of proliferation during the period of growth in mammals, may increase their maximum life span.  相似文献   

18.
Oxidative damage to proteins is considered to be one of the major causes of aging and age-related diseases, and thus mechanisms have evolved to prevent or reverse these modifications. Methionine is one of the major targets of reactive oxygen species (ROS), where it is oxidized to methionine sulfoxide (MetO). Recently, evidence has accumulated suggesting that methionine (Met) oxidation may play an important role in the development and progression of neurodegenerative diseases like Alzheimer's and Parkinson's diseases. Oxidative alteration of Met to Met(O) is reversed by the methionine sulfoxide reductases (consisting of MsrA enzymes that reduce S-MetO and MsrB enzymes that reduce R-MetO, respectively). A major biological role of the Msr system is suggested by the fact that the MsrA null mouse (MT) exhibits a neurological disorder in the form of ataxia ("tip toe walking"), is more sensitive to oxidative stress, and has a shorter life span (by approximately 40%) than wild-type (WT) mice. By their action, the Msr enzymes can regulate protein function, be involved in signal-transduction pathways, and prevent cellular accumulation of faulty proteins. Malfunction of the Msr system can lead to cellular changes resulting in compromised antioxidant defense, enhanced age-associated diseases involving neurodegeneration, and shorter life span. In this review, the function and possible roles of the Msr system in prokaryotes and eukaryotes, in general, and in neurodegenerative diseases, in particular, will be discussed.  相似文献   

19.
Allometric principles account for most of the observed variation in maximum life span among mammals. When body-size effects are controlled for, most of the residual variance in mammalian life span can be explained by variations in brain size, metabolic rate and body temperature. It is shown that species with large brains for a given body size and metabolic rate, such as anthropoid primates, also have long maximum life spans. Conversely, mammals with relatively high metabolic rates and low levels of encephalization, as in most insectivores and rodents, tend to have short life spans. The hypothesis is put forward that encephalization and metabolic rate, which may govern other life history traits, such as growth and reproduction, are the primary determinants directing the evolution of mammalian longevity.  相似文献   

20.
Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food, and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor in the reduction of mortality rate by DR in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号