首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Retinoic acid (RA) alters the developmental fate of the axial skeletal anlagen. "Anteriorizations" or "posteriorizations," the assumption of characteristics of embryonic areas normally anterior or posterior to the affected tissues, are correlated with altered embryonal expression domains of Hox genes after in utero RA treatment. These "homeotic" changes have been hypothesized to result from alterations of a "Hox cod" which imparts positional identity in the axial skeleton. To investigate whether such developmental alterations were specific to RA, or were a more general response to xenobiotic exposure, CD-1 pregnant mice were exposed to RA, valproic acid (VA), or bromoxynil (Br) during organogenesis. Additionally, the expression domains of two Hox genes, Hoxa7 and Hoxa10, were examined in gestation day (GD) 12.5 embryos obtained from control, RA, VA, or Br, treated gravid dams exposed on GD 6, 7, or 8. The anterior expression boundary of Hoxa7 is at the level of the C7/T1 vertebrae and that of Hoxa10 is at L6/S1. Compound-induced changes in the incidence of skeletal variants were observed. These included supernumerary cervical ribs (CSNR) lateral to C7, 8 vertebrosternal ribs, supernumerary lumbar ribs (LSNR) lateral to L1, extra presacral vertebrae, and the induction of vertebral and/or rib malformations. RA and VA administration on GD 6 caused posteriorization in the cervico-thoracic region (CSNR) while GD 8 exposure to any of the three compounds resulted in anteriorizations in the thoraco-lumbar area (LSNR and an increase in the number of presacral vertebrae). These effects occurred across regions of the axial skeleton. Analysis of gene expression demonstrated changes in the anterior boundaries of Hoxa7 expression domains in embryos treated on GD 6 and 8 with RA. VA and Br did not induce any statistically significant alterations in Hoxa7 and none of the compounds caused alterations in Hoxa10 expression domains. The studies indicate that RA GD 6 treatment-induced Hoxa7 shifts were rostral (posteriorization) while the RA-induced GD 8 anterior expression boundary shift was caudal (anteriorization), correlating with the axial skeletal changes noted. These data suggest that xenobiotic compounds such as VA and Br may induce similar axial skeletal changes by affecting different components of the developmental processes involved in the patterning of the axial skeleton.  相似文献   

2.
The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs.  相似文献   

3.
The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory animals used to assess potential adverse developmental effects. This article emphasizes vertebrae and rib anomalies both spontaneous and agent induced. Topics discussed include the morphology of the more common effects; incidences in both human and experimental animal populations; the types of anomalies induced in the axial skeleton by methanol, boric acid, valproic acid and others; the postnatal persistence of common skeletal anomalies; and the genetic control of the development of the axial skeleton. Tables of the spontaneous incidence of axial anomalies in both humans and animals are provided.  相似文献   

4.
BACKGROUND: Epidermal growth factor (EGF) and transforming growth factor-alpha (TGFalpha) regulate cell proliferation and differentiation in the embryo. The induction of cleft palate (CP) by all trans-retinoic acid (RA) was associated with altered expression of TGFalpha, EGF receptor, and binding of EGF. This study uses knockout (KO) mice to examine the roles of EGF and TGFalpha in teratogenic responses of embryos exposed to RA. METHODS: Pregnant wild-type (WT) mice of mixed genetic background, EGF KO, C57BL/6J, and TGFalpha KO mice were given a single oral dose of RA (100 mg/kg, 10 ml/kg) or corn oil on GD 10 at 12 PM, GD 11 at 12 PM or 4 PM, or GD 12 at 8 AM or 12 PM (plug day = GD 0). GD 18 fetuses were examined for external, visceral, and skeletal effects. RESULTS: After exposure to RA on GD 12, the incidence of CP in EGF KO was significantly reduced relative to WT. In TGFalpha KO fetuses, RA exposure on GD 10 increased the incidence of CP versus C57BL/6J. The incidence of skeletal defects in the limbs, vertebrae, sternebrae, and ribs were also affected by lack of expression of EGF or TGFalpha with region-specific amelioration or exacerbation of the effects of RA. In TGFalpha KO fetuses, incidences of forelimb long bone and digit defects increased relative to C57BL/6J. In EGF KO fetuses, relative to WT, the incidence of hindlimb oligodactyly was increased. In EGF KO, but not WT, RA produced short, bent radius, humerus, and ulna. Both TGFalpha and EGF KO mice had increased incidences of dilation of the renal pelvis and this was reduced by RA. CONCLUSIONS: RA exposure produced skeletal and visceral defects in all genotypes; however, EGF or TGFalpha KO influenced the incidence and severity of defects. This study supports a role for EGF and TGFalpha in the response to RA.  相似文献   

5.
BACKGROUND: As a class effect, potent I(Kr)-blockers have been shown to induce stage-specific external malformations. The aim of this study was to investigate whether I(Kr)-blockers also induce stage-specific visceral and skeletal defects and to further elucidate a proposed arrhythmia-hypoxia hypothesis. METHODS: Single oral doses of the selective I(Kr)-blocker almokalant (ALM) 25-150 micromol/kg, 7-14 dams/group, were given to Sprague-Dawley rats on gestation days (GD) 10-14, and the fetuses were examined for malformations on GD 21. One group was pretreated with the spin-trapping agent, alpha-phenyl-N-t-butylnitrone (PBN), given intraperitoneally 1 hr before ALM on GD 11. RESULTS: Cardiac ventricular septum defects and vascular malformations were observed after dosing on GD 10-11 and, to a lesser degree, on GD 12-13. Urogenital defects, absence/malposition of the postcaval lung lobe, and attenuated diaphragm were observed mainly on GD 10-11. Skeletal examination showed a high incidence of vertebral abnormalities on thoracic level on GD 10, on lower thoracic to caudal level on GD 11, and sternebral defects were observed all days. On GD 13 brachy-, oligo-, and syndactyly of the forepaw were induced, and of the hindpaw on GD 14. PBN reduced the incidence of both visceral and skeletal defects. CONCLUSIONS: The stage specificity of observed visceral and skeletal defects correlates well with what has been reported in the literature after temporary interruption of oxygen supply during the same stages of development. The protective effect by PBN present further evidence that the teratogenicity of potent I(Kr)-blockers is related to induction of hypoxia- reoxygenation injury due to embryonic cardiac arrhythmia.  相似文献   

6.
BACKGROUND: Dominant hemimelia (Dh) is a dominant mutation that arose spontaneously in mice; Dh animals exhibit reduced numbers of lumbar vertebrae and preaxial hindlimb defects. Absence of spleen occurs in both Dh/+ and Dh/Dh animals. This study was undertaken to characterize asymmetry of skeletal defects in the Dh mouse, specifically hindlimb asymmetries in association with axial defects. METHODS: A total of 29 Dh/+ and 100 +/+ fetuses (gestational day [GD] 18) were identified by phenotype and linked DNA and their skeletons were analyzed. RESULTS: The results revealed an asymmetry of hindlimb skeletal defects in Dh/+ animals. In +/+ fetuses, the left and right tibia were symmetrical with 99.0% of the animals possessing 6 lumbar vertebrae. However, Dh/+ fetuses showed asymmetry in length of left and right tibia and a reduction to 5 lumbar vertebrae in 86.2% of animals. There was a range from mild to severe asymmetry as evidenced by direct comparison of the length of the left to the right tibia of each animal. Tibial shortening was greater on the left than the right in 65.5% of Dh/+ fetuses; only 20.7% had symmetrical tibia. Oligodactyly, defined as absence of the first or second toe, was similarly more frequent on the left. CONCLUSIONS: Asymmetry is characteristic of many human limb malformations, although analysis of the molecular basis is difficult. Therefore, Dh/+ mice, which exhibit reduced numbers of lumbar vertebrae, asymmetric hindlimb defects, and complete absence of spleen, provide an important model for studying the relationship between axial patterning and asymmetric skeletal defects.  相似文献   

7.
8.
BACKGROUND: The antiepileptic drug valproic acid (VPA) is well known to cause neural tube and skeletal defects in both humans and animals. The amidic VPA analogues valpromide (VPD) and valnoctamide (VCD) have much lower teratogenicity than VPA inducing exencephaly in mice. The objective of this study was to investigate the teratogenic effects of VPA, VPD, and VCD on the skeleton of NMRI mice. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of VPA (400 and 800 mg/kg), VPD (800 mg/kg), or VCD (800 mg/kg) on the morning of gestation day (GD) 8. Cesarean section was carried out on GD 18. Live fetuses were double‐stained for bone and cartilage and their skeletons were examined. RESULTS: Significant increases in fetal loss and exencephaly rate were observed with VPA at 800 mg/kg compared to the vehicle control. There were no significant differences between either VPD or VCD and the control groups for any parameter at cesarean section. A number of abnormalities were dose‐dependently induced at high incidences by VPA in both the cartilage and bone of vertebrae, ribs and sternum. In contrast, lower frequencies of abnormality were exhibited with VPD and VCD than VPA in all skeletons affected by VPA. CONCLUSIONS: These findings clearly indicate that VPD and VCD are distinctly less teratogenic than VPA in the induction of not only neural tube defects, but also skeletal abnormalities. A structure‐teratogenicity relationship of VPA on the skeleton is suspected. Birth Defects Res B 71:47–53, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

9.
Prenatal exposure to elevated levels of boric acid (BA) causes reduced incidences of supernumerary ribs and shortening/absence of the 13th rib in multiple laboratory species. To explore this further, Sprague-Dawley rats received 500 mg/kg b.i.d. on gestation days (gd) 5–9, 6–9, 6–10, or on single days between gd 6 and 11 (plug day = gd 0); gd-21 fetuses were stained for skeletal examination. Following multiday exposures, malformations of the axial skeleton involved the head, sternum, ribs, and vertebrae. Shortening/absence of the 13th rib was seen particularly in the gd 5–9 and 6–10 exposure groups. Although most groups exposed on single days were generally unaffected, about 90% of the gd-9 exposed fetuses had only six cervical vertebrae; the deficient region was usually C3-C5. In contrast, gd-10 treatment caused agenesis of a thoracic/lumbar vertebra in over 60% of the fetuses; the deficient region was usually T11. For 13-ribbed fetuses, the length of rib 13 was shortened compared to controls. Postnatal assessment suggested increased mortality for gd-10 exposed pups. Embryos in culture showed reduced development when exposed to BA for 48 h. These findings demonstrate the critical periods for axial development in the rat and provide an experimental model for the study of homeotic shifts. The information in this document has been funded wholly by the US Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.  相似文献   

10.
BACKGROUND: Inorganic arsenic, when given by injection to pregnant laboratory animals (mice, rats, hamsters), has been shown to induce malformations. Arsenic methylation may be a detoxification step, and diets deficient in protein are a poor source of methyl donors and may possibly result in impaired arsenic methylation. Human health effects from chronic arsenic exposure have been reported mainly in populations with low socioeconomic status. Individuals in such populations are likely to suffer from malnutrition, which can compromise embryonic/fetal development and diminish arsenic methylating capacity. We sought to determine if dietary protein deficiency affects the developmental toxicity of inorganic arsenic. METHODS: Mated females were randomly assigned to one of 12 treatment groups. Experimental groups received either AsIII or AsV i.p. on Gestation Day 8 (GD 8, plug=GD 0) and were maintained on a 5%, 10%, or 20% protein custom mixed diet from GD 1 until sacrifice. Controls received the custom diets alone, were given AsIII or AsV i.p. on GD 8 with Teklad LM-485 rodent diet, or were fed the LM-485 diet alone. Test females were sacrificed on GD 17, and their litters were examined for mortality and developmental defects. RESULTS: Arsenic plus dietary protein deficiency decreased maternal weight gain and increased the incidences of exencephaly, ablepharia, and skeletal defects, such as malformed vertebral centra, fused ribs, and abnormal sternebrae (bipartite, rudimentary, or unossified). CONCLUSIONS: These results demonstrate that dietary protein deficiency enhances the developmental toxicity of inorganic arsenic, possibly by impairment of arsenic methylation.  相似文献   

11.
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior–posterior (A–P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A–P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11−/− mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning.  相似文献   

12.
BACKGROUND: To test whether the differentiating embryo is susceptible to the teratogenic effects of the nitric oxide (NO) synthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME). METHODS: ICR-(CD-1) mice received a single intraperitoneal injection of L-NAME at 90, 150, or 300 mg/kg on Gestation Day (GD) 8 or 9. Controls were treated with vehicle on GD 8 and 9. Teratological assessments were carried out near term (GD 18). RESULTS: Maternal treatment with a single dose of L-NAME at 150 or 300 mg/kg on either GD 8 or 9 produced axial skeletal defects in the ICR (CD-1) mouse fetuses. Other treatment-related effects included increased embryo lethality and fetal growth restriction. CONCLUSIONS: This study provides evidence that in utero exposure to L-NAME can affect organogenesis of the axial skeleton.  相似文献   

13.
Abstract Why do all mammals, except for sloths and manatees, have exactly seven cervical vertebrae? In other vertebrates and other regions, the vertebral number varies considerably. We investigated whether natural selection constrains the number of cervical vertebrae in humans. To this end, we determined the incidence of cervical ribs and other homeotic vertebral changes in radiographs of deceased human fetuses and infants, and analyzed several existing datasets on the incidence in infants and adults. Our data show that homeotic transformations that change the number of cervical vertebrae are extremely common in humans, but are strongly selected against: almost all individuals die before reproduction. Selection is most probably indirect, caused by a strong coupling of such changes with major congenital abnormalities. Changes in the number of thoracic vertebrae appear to be subject to weaker selection, in good correspondence with the weaker evolutionary constraint on these numbers. Our analysis highlights the role of prenatal selection in the conservation of our common body plan.  相似文献   

14.
BACKGROUND: Gestational exposure to di-n-butyl phthalate (DBP), a ubiquitous environmental contaminant, has been shown to interfere with the development of the male reproductive tract by acting as an antiandrogen. This study was conducted to identify the critical days for the abnormal development of the male reproductive tract, specifically the testis and epididymis. METHODS: Timed-pregnant Sprague-Dawley rats were dosed with DBP at 500 mg/kg/day on gestation day (GD) 14 and 15, 15 and 16, 16 and 17, 17 and 18, 18 and 19, or 19 and 20 (GD 0=plug day). Anogenital distance (AGD) was measured on postnatal day (PND) 1 and 13, while areloa number was recorded on PND 13 only. After weaning, males were allowed to mature to PND 90 at which time they were necropsied. Areloa number and AGD were recorded and testes, epididymides, seminal vesicles, prostate gland, kidneys, and liver weighed. Blood serum was collected and assayed for total testosterone concentration. RESULTS: There were no observable effects on litter size, sex ratio, serum testosterone concentration, or mortality of pups. Statistically significant permanent reductions in AGD were seen in males exposed prenatally to DBP on GD 15 and 16 or GD 18 and 19. On PND 13, areola were present in males exposed to DBP on GD 15 and 16, 16 and 17, 17 and 18, and 19 and 20. However, permanent retention occurred only in males after DBP exposure on GD 16 and 17. Exposure to DBP on only GD 17 and 18 elicited a reduction in epididymal weights; while exposure on only GD 16 and 17 caused a significant increase in the weights of the testes due to edema. In this study, epididymal and testicular malformations were most prevalent after exposure to DBP on any gestational day. Epididymal malformations, characterized by agenesis of various regions and small or flaccid testes were significantly increased in DBP-exposed males only on GD 16 and 17. CONCLUSIONS: These findings suggest that 2-day DBP exposure is highly detrimental to the developing reproductive tract of the male fetus and the critical window for abnormal development is GD 16-18.  相似文献   

15.
The post-cranial axial skeleton consists of a metameric series of vertebral bodies and intervertebral discs, as well as adjoining ribs and sternum. Patterning of individual vertebrae and distinct regions of the vertebral column is accomplished by Polycomb and Hox proteins in the paraxial mesoderm, while their subsequent morphogenesis depends partially on Pax1/Pax9 in the sclerotome. In this study, we uncover that Pbx1/Pbx2 are co-expressed during successive stages of vertebral and rib development. Next, by exploiting a Pbx1/Pbx2 loss-of-function mouse, we show that decreasing Pbx2 dosage in the absence of Pbx1 affects axial development more severely than single loss of Pbx1. Pbx1/Pbx2 mutants exhibit a homogeneous vertebral column, with loss of vertebral identity, rudimentary ribs, and rostral hindlimb shifts. Of note, these axial defects do not arise from perturbed notochord function, as cellular proliferation, apoptosis, and expression of regulators of notochord signaling are normal in Pbx1/Pbx2 mutants. While the observed defects are consistent with loss of Pbx activity as a Hox-cofactor in the mesoderm, we additionally establish that axial skeletal patterning and hindlimb positioning are governed by Pbx1/Pbx2 through their genetic control of Polycomb and Hox expression and spatial distribution in the mesoderm, as well as of Pax1/Pax9 in the sclerotome.  相似文献   

16.
为探讨中国鲤形目鱼类中轴骨骼数及其与系统发育和生态习性的相关性,采用X光透视照相法对157种鲤科(Cyprinidae)、鳅科(Cobitidae)、平鳍鳅科(Balitoridae)鱼类的脊椎骨数、肋骨数、尾椎数进行了比较分析。结果显示,中国鲤形目鱼类的脊椎骨数在30-52枚之间,均值39.45?4.44;肋骨数在8-28对之间,均值15.27?3.08;尾椎数在14-34枚之间,均值21.08?2.89。依据脊椎骨数、肋骨数、尾椎数对鲤科各亚科进行聚类,显示鲤科12个亚科分为2大类:雅罗鱼类,包括雅罗鱼亚科、鲌亚科、鲴亚科、裂腹鱼亚科等4亚科;鲃类,包括鲢亚科、鮈亚科、鱼丹亚科、鲃亚科、野鲮亚科、鳅鮀亚科、鲤亚科、鱊亚科等8亚科。单因素方差分析显示,鲤科肉食性鱼类的肋骨数与脊椎骨数的比值显著少于植食性鱼类(P<0.05),而脊椎骨数、尾椎数则显著多于植食性鱼类(P<0.05)。中上层鱼类的脊椎骨数、尾椎数显著多于下层鱼类(P<0.05)。极小型鱼类的脊椎骨数、肋骨数,以及肋骨数与脊椎骨数之比显著少于大型鱼类(P<0.05)。表明鲤科鱼类的中轴骨骼数与其系统发育和生态习性及体型具有明显的相关性。  相似文献   

17.
Ethylene glycol (EG), a chemical which causes skeletal malformations in rats, was administered by gavage to sperm positive CD rats on gestational days (gd) 6 through 15 at doses of 0 or 2,500 mg/kg/day to assess its effects on the pre- and postnatal skeletal development. Dams and fetuses/pups were killed on gd 18, 20, postnatal day (pnd) 1, 4, 14, 21, or 63, and offspring were double-stained for examination of skeletal malformations and degree of ossification of rapidly developing skeletal districts. No difference in gestational day of delivery between controls and the EG-treated dams was seen. Fetal weights per litter were significantly decreased with EG treatment in both the gd 18 and 20 groups. Pup body weight on pnd 1 was significantly below controls; however, EG had no effect on pup body weight on pnd 4-63. The percentage of fetuses/pups with skeletal malformations per litter was significantly increased after EG exposure for all time points except at pnd 63, with a predominance of axial skeletal defects. The percentages of total ossification, of sternabrae ossified, and of vertebral centra ossified were significantly reduced in the EG groups on gd 20 and on pnd 1-21, but not on gd 18 or on pnd 63. When the ossification data were subjected to statistical analysis with fetal/pup weights as a covariate, the values for EG-exposed pups on gd 20 were not statistically significantly different from the control values. The reduced ossification values for EG-exposed pups on pnd 1-21 retained statistical significance even after covariate analysis. There was no effect of dose or body weight on ossification of fore- or hindlimb digits. In conclusion, the differences in incidence of skeletal alterations observed prenatally and through pnd 21 were not evident by pnd 63, suggesting that perinatal skeletal abnormalities may not always be permanent.  相似文献   

18.
BACKGROUND: Our laboratory has been conducting positive control studies to evaluate the utility of micro‐computed tomography (micro‐CT) for qualitative evaluation of fetal skeletal morphology. All‐trans‐retinoic acid (atRA) was used to produce a different spectrum of defects compared to our previous studies with boric acid and hydroxyurea. METHODS: Groups of five mated Crl:CD(SD) female rats each were administered vehicle or atRA (2.5–50 mg/kg) on GD 10, and groups of four mated Dutch Belted rabbits each were dosed with vehicle or atRA (6.25–25 mg/kg) on GD 9. Cesarean sections were performed on GD 21 and 28, respectively. Following external examination the viscera were removed and fetuses scanned in a micro‐CT imaging system. Fetuses were subsequently stained with alizarin red. Skeletal morphology was evaluated by each method without the knowledge of treatment group. Total bone mineral content (BMC) of each fetus was quantitated using the micro‐CT images. RESULTS: In rats there were dose‐related increases in the incidence of extra lumbar vertebra and non‐dose‐related increases in supernumerary ribs at all dose levels. There were decreases in mean number of ossified sacrocaudal vertebra at ≥5 mg/kg, and increases in skull bone malformations at ≥10 mg/kg. Rabbits were less sensitive on a mg/kg basis since skeletal malformations and a decrease in mean number of ossified sacrocaudal vertebra were observed only in the 25‐mg/kg group. Micro‐CT evaluation detected essentially the same incidence of skeletal abnormalities as seen in alizarin red‐stained rat and rabbit fetuses. BMC analysis showed a trend toward slight decreases in atRA‐treated rats, but no notable changes in rabbits. CONCLUSIONS: These results add support to our previous work that demonstrates that micro‐CT imaging can effectively assess rat and rabbit fetal skeletal morphology. Birth Defects Res (Part B) 89:408–417, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号