首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of unbound protein L1 and its complexes with ribosomal and messenger RNAs were analyzed. The apparent association rate constants for L1-RNA complexes proved to depend on the conformation of unbound L1. It was suggested that L1 binds to rRNA with a higher affinity than to mRNA, owing to additional interactions between domain II of L1 and the loop rRNA region, which is absent in mRNA. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 650–657. The article was translated by the authors.  相似文献   

2.
In bacteria, the expression of ribosomal proteins is often feedback-regulated at the translational level by the binding of the protein to its own mRNA. This is the case for L20, which binds to two distinct sites of its mRNA that both resemble its binding site on 23 S rRNA. In the present work, we report an NMR analysis of the interaction between the C-terminal domain of L20 (L20C) and both its rRNA- and mRNA-binding sites. Changes in the NMR chemical shifts of the L20C backbone nuclei were used to show that the same set of residues are modified upon addition of either the rRNA or the mRNA fragments, suggesting a mimicry at the atomic level. In addition, small angle x-ray scattering experiments, performed with the rRNA fragment, demonstrated the formation of a complex made of two RNAs and two L20C molecules. A low resolution model of this complex was then calculated using (i) the rRNA/L20C structure in the 50 S context and (ii) NMR and small angle x-ray scattering results. The formation of this complex is interesting in the context of gene regulation because it suggests that translational repression could be performed by a complex of two proteins, each interacting with the two distinct L20-binding sites within the operator.  相似文献   

3.
Ribosomal protein S1 is shown to interact with the non-coding RNA DsrA and with rpoS mRNA. DsrA is a non-coding RNA that is important in controlling expression of the rpoS gene product in Escherichia coli. Photochemical crosslinking, quadrupole-time of flight tandem mass spectrometry, and peptide sequencing have identified an interaction between DsrA and S1 in the 30S ribosomal subunit. Purified S1 binds both DsrA (K(obs) approximately 6 x 10(6) M(-1)) and rpoS mRNA (K(obs) approximately 3 x 10(7) M(-1)). Ribonuclease probing experiments indicate that S1 binding has a weak but detectable effect on the secondary structure of DsrA or rpoS mRNA.  相似文献   

4.
Ribosomal protein L11 has two domains: the C-terminal domain (L11-C76) binds rRNA, whereas the N-terminal domain (L11-NTD) may variously interact with elongation factor G, the antibiotic thiostrepton, and rRNA. To begin to quantitate these interactions, L11 from Bacillus stearothermophilus has been overexpressed and its properties compared with those of L11-C76 alone in a fluorescence assay for protein-rRNA binding. The assay relies on 2'-amino-butyryl-pyrene-uridine incorporated in a 58-nucleotide rRNA fragment, which gives approximately 15-fold enhancement when L11 or L11-C76 is bound. Although the pyrene tag weakens protein binding, unbiased protein-RNA association constants were obtained in competition experiments with untagged RNA. It was found that (i) intact B. stearothermophilus L11 binds rRNA with K approximately 1.2 x 10(9) m(-1) in buffers with 0.2 m KCl, about 100-fold tighter than Escherichia coli L11; (ii) the N-terminal domain makes a small, salt-dependent contribution to the overall L11-RNA binding affinity (approximately 8-fold enhancement at 0.2 m KCl), (iii) L11 stimulates thiostrepton binding by 2.3 +/- 0.6 x 10(3)-fold, predicting an overall thiostrepton affinity for the ribosome of approximately 10(9) m(-1), and (iv) the yeast homolog of L11 shows no stimulation of thiostrepton binding. The latter observation resolves the question of why eukaryotes are insensitive to the antibiotic. These measurements also show that it is plausible for thiostrepton to compete directly with EF-G.GDP for binding to the L11-RNA complex, and provide a quantitative basis for further studies of L11 function and thiostrepton mechanism.  相似文献   

5.
6.
Total low molecular weight nuclear RNAs of mouse ascites cells have been labeled in vitro and used as probes to search for complementary sequences contained in nuclear or cytoplasmic RNA. From a subset of hybridizing lmw RNAs, two major species of 58,000 and 35,000 mol. wt. have been identified as mouse 5 and 5.8S ribosomal RNA. Mouse 5 and 5.8S rRNA hybridize not only to 18 and 28S rRNA, respectively, but also to nuclear and cytoplasmic poly(A+) RNA. Northern blot analysis and oligo-dT cellulose chromatography have confirmed the intermolecular base-pairing of these two small rRNA sequences to total poly(A+) RNA as well as to purified rabbit globin mRNA. 5 and 5.8S rRNA also hybridize with positive (coding) but not negative (noncoding) strands of viral RNA. Temperature melting experiments have demonstrated that their hybrid stability with mRNA sequences is comparable to that observed for the 5S:18S and 5.8S:28S hybrids. The functional significance of 5 and 5.8S rRNA base-pairing with mRNAs and larger rRNAs is unknown, but these interactions could play important coordinating roles in ribosome structure, subunit interaction, and mRNA binding during translation.  相似文献   

7.
A gentle and efficient method for selectively removing S1 from ribosomes was developed: the S1-free translation system prepared from such ribosomes is stimulated 10-20-fold (depending on the mRNA) by a stoichiometric amount of added purified S1. With this system, we examined the activity of mono- and di-N-ethylmaleimide derivatives of S1 in protein synthesis using synthetic and natural mRNAs and electrophoretic analysis of the translation products. The results show that ribosomes containing such modified S1's are functionally active although at a somewhat lower level (50-80% activity). Since treatment of S1 with N-ethylmaleimide abolishes the helix-destabilizing ability of S1, we conclude that this ability is not primarily responsible for S1's biological function. A new model for the role of S1 is proposed on the basis of the physical, structural, and RNA-binding properties of S1.  相似文献   

8.
Mutants of Escherichia coli lacking ribosomal protein L1   总被引:8,自引:0,他引:8  
Two independently isolated mutants of Escherichia coli, RD19 and MV17-10, that appeared to lack protein L1 on their ribosomes, as determined by two-dimensional gels, were subjected to a battery of immunological tests to find if L1 was indeed lacking. The tests involved Ouchterlony double diffusion, modified immunoelectrophoresis, dimer formation on sucrose gradients, and affinity chromatography. By all these criteria, protein L1 was missing from the ribosome in these mutants. Nor was any L1 cross-reacting material detectable in the supernatant. There was, however, a specific two- to fivefold increase in concentrations of protein L11 in the supernatants of the mutants, which was evidence that protein L1 acts as a feedback inhibitor of expression of the operon coding for the genes for proteins L11 and L1.Electron micrographs of ribosomes obtained from these mutants were indistinguishable from those of wild-type strains. 50 S ribosomal subunits from mutants RD19 and MV17-10 were reconstituted with purified L1 from wild-type and investigated by immunoelectron microscopy. The three-dimensional location of ribosomal protein L1 on the surface of the large subunit was determined. L1 is located on the wider lateral protuberance of the 50 S subunit. The position of protein L1 in 50 S subunits reconstituted from mutants RD19 and MV17-10 was indistinguishable from the position in subunits from wild-type.  相似文献   

9.
10.
The RNA-binding ability of ribosomal protein L1 is of profound interest, since L1 has a dual function as a ribosomal structural protein that binds rRNA and as a translational repressor that binds its own mRNA. Here, we report the crystal structure at 2.6 A resolution of ribosomal protein L1 from the bacterium Thermus thermophilus in complex with a 38 nt fragment of L1 mRNA from Methanoccocus vannielii. The conformation of RNA-bound T.thermophilus L1 differs dramatically from that of the isolated protein. Analysis of four copies of the L1-mRNA complex in the crystal has shown that domain II of the protein does not contribute to mRNA-specific binding. A detailed comparison of the protein-RNA interactions in the L1-mRNA and L1-rRNA complexes identified amino acid residues of L1 crucial for recognition of its specific targets on the both RNAs. Incorporation of the structure of bacterial L1 into a model of the Escherichia coli ribosome revealed two additional contact regions for L1 on the 23S rRNA that were not identified in previous ribosome models.  相似文献   

11.
In an Escherichia coli B strain missing ribosomal protein L1, the synthesis rate of L11 is 50% greater than that of other ribosomal proteins. This finding is in agreement with the previous conclusion that L1 regulates synthesis of itself and L11 and indicates that this regulation is important for maintaining the balanced synthesis of ribosomal proteins under physiological conditions.  相似文献   

12.
13.
14.
Human S3 (hS3) is a structural component of the ribosome and, in addition to its role in translation, possesses apurinic/apyrimidinic (AP) lyase activity, characteristic of DNA repair enzymes. Recombinant hS3 was isolated from inclusion bodies, refolded under different conditions, and tested for the ability to bind and cleave oligodeoxyribonucleotide substrates with various lesions abundant in genomic DNA: AP sites, uracil, 8-oxoguanine, 8-oxoadenine, 5,6-dihydrouracil, and hypoxanthine. It was found that hS3 is capable of cleaving AP sites via the β-elimination mechanism, producing a Schiff base covalent intermediate, but cannot cleave substrates with the other lesions. Refolding in the presence of Fe2+ and S2? did not increase hS3 activity, suggesting the absence of an iron-sulfur cluster. The binding of hS3 with DNA ligands containing oxidized or deaminated bases was less efficient than with intact DNA. It was assumed that the catalytic activity of hS3 towards AP sites is most likely unimportant for global DNA repair in vivo, but is possibly involved in repairing DNA sites in certain genome regions.  相似文献   

15.
The pattern of proteins synthesized at different stages of differentiation of the slime mold Dictyostelium discoideum was studied by two-dimensional polyacrylamide gel electrophoresis. Of the approximately 400 proteins detected during growth and/or development, synthesis of most continued throughout differentiation. Approximately 100 proteins show changes in their relative rates of synthesis. During the transition from growth to interphase, the major change observed is reduction in the relative rate of synthesis of about 8 proteins. Few further changes are noticeable until the stage of late cell aggregation, when production of about 40 new proteins begins and synthesis of about 10 is reduced considerably. Thereafter, there are few changes in the pattern of protein synthesis. Major changes in the relative rates of synthesis of a number of proteins are found during culmination, but few culmination-specific proteins are observed. In an attempt to understand the molecular basis for these changes, mRNA was isolated from different stages of differentiation and translated in an improved wheat germ cell-free system; the products were resolved on two-dimensional gels. The ratio of total translatable mRNA to total cellular RNA is constant throughout growth and differentiation. Messenger RNAs for many, but not all, developmentally regulated proteins can be identified by translation in cell-free systems. Actin is the major protein synthesized by vegetative cells and by early differentiating cells. The threefold increase in the relative rate of synthesis of actin during the first 2 hr of differentiation and the decrease which occurs thereafter can be accounted for by parallel changes in the amount of translatable actin mRNA. Most of the changes in the pattern of protein synthesis which occur during the late aggregation and culmination stages can also be accounted for by parallel increases or decreases in the amounts of translatable mRNAs encoding these proteins. It is concluded that mRNAs do not appear in a translatable form before synthesis of the homologous protein begins, and that regulation of protein synthesis during development is primarily at the levels of production or destruction of mRNA.  相似文献   

16.
Human S3 protein (hS3) is a structural component of the ribosome, which, in addition to its role in translation, possesses activities typical of some DNA repair enzymes. Recombinant hS3 purified from inclusion bodies and refolded under different conditions was investigated for its ability to bind and cleave oligodeoxyribonucleotide substrates containing different lesions abundant in cellular DNA (apurine/apyrimidine sites, uracil, 8-oxoguanine, 8-oxoadenine, 5,6-dihydrouracil, hypoxanthine). hS3 catalyzed cleavage of apurine/apyrimidine sites through beta-elimination mechanism forming a transient Schiff base covalent intermediate, but did not cleave substrates containing other lesions. Refolding of hS3 in the presence of Fe2+ and S2- ions did not increase its activity, despite the earlier suggestions that this protein could contain an iron-sulfur cluster. Binding of hS3 to DNA ligands containing oxidized and deaminated bases was less efficient than its binding to undamaged DNA. Therefore, the activity of hS3 on apurine/apyrimidine sites is not likely to be involved in the global in vivo DNA repair but could have a role in the repair in some specific locations in the genome.  相似文献   

17.
A Ghosh  T Ghosh  S Ghosh  S Das    S Adhya 《Nucleic acids research》1994,22(9):1663-1669
Using synthetic antisense RNA from the 5'-untranslated region of the beta-tubulin gene as probe in gel retardation assays, a heat stable RNA-binding factor was identified in promastigotes of the kinetoplastid protozoan Leishmania donovani. The same or similar factors interact with several small ribosomal RNA (srRNA) species and, more weakly, with tRNA, as shown by binding and competition experiments. Deletion analysis indicated involvement of repeated purine-rich motifs on the antisense RNA, in the reaction. Related, conserved motifs occur on at least two of the srRNAs. By a modified Western blot assay, the RNA-binding species was identified as a single, small polypeptide. The activity is apparently specific for the promastigote stage of the parasite, being undetectable in amastigotes. The properties of this RNA-binding factor suggest that it is a novel, previously uncharacterized protein.  相似文献   

18.
The in vivo structural stabilities of the T7 early mRANs were measured and found to vary according to whether chloramphenicol or puromycin were added before or after infection with phage T7. These antibiotics had little effect upon messenger stability when they were added prior to infection. When chloramphenicol (but not puromycin) was added after completion of T7 early mRNA synthesis, the structural stability of the messages was enhanced. Messages which are inefficiently translated in vivo due to altered 5′-termini were not stabilized by the late addition of chloramphenicol. We interpret these results to mean that ribosomal protection of the T7 early mRNAs is responsible for the increase in messenger structural stability in the presence of chloramphenicol.  相似文献   

19.
A functional ribosomal protein mRNA, encoding the 60 S subunit protein L1, has been synthesized in vitro using bacteriophage SP6 RNA polymerase. This mRNA directs the synthesis of a product indistinguishable from L1 protein purified from Xenopus ovarian ribosomes. Our results show that L1 synthesis in stage VI oocytes increases in response to microinjection of exogenous SP6-L1 mRNA, but excess L1 protein is not stably accumulated. These results indicate that dosage compensation does not occur at the translational level for this ribosomal protein mRNA and that the abundance of this protein in fully grown oocytes is subject to post-translational regulation.  相似文献   

20.
The primary structure of the 23S rRNA binding ribosomal protein L1 from the 50S ribosomal subunit ofThermus thermophilus ribosomes has been elucidated by direct protein sequencing of selected peptides prepared by enzymatic and chemical cleavage of the intact purified protein. The polypeptide chain contains 228 amino acids and has a calculated molecular mass of 24,694 D. A comparison with the primary structures of the corresponding proteins fromEscherichia coli andBacillus stearothermophilus reveals a sequence homology of 49% and 58%, respectively. With respect to both proteins, L1 fromT. thermophilus contains particularly less Ala, Lys, Gln, and Val, whereas its content of Glu, Gly, His, Ile, and Arg is higher. In addition, two fragments obtained by limited proteolysis of the intact, unmodified protein were characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号