首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LCOs (lipochitin oligosaccharides, Nod factors) produced by the rhizobial symbiote of Vicia sativa subsp. nigra (vetch, an indeterminate-type nodulating plant) are mitogenic when carrying an 18:4 acyl chain but not when carrying an 18:1 acyl chain. This suggests that the 18:4 acyl chain specifically contributes to signaling in indeterminate-type nodulation. In a working hypothesis, we speculated that the 18:4 acyl chain is involved in oxylipin signaling comparable to, for example, signaling by derivatives of the 18:3 fatty acid linolenic acid (the octadecanoid pathway). Because salicylic acid (SA) is known to interfere with oxylipin signaling, we tested whether nodulation of vetch could be affected by addition of 10(-4) M SA. This concentration completely blocked nodulation of vetch by Rhizobium leguminosarum bv. viciae and inhibited the mitogenic effect of 18:4 LCOs but did not affect LCO-induced root-hair deformation. SA did not act systemically, and only biologically active SA derivatives were capable of inhibiting nodule formation. SA also inhibited R. leguminosarum bv. viciae association with vetch roots. In contrast, addition of SA to Lotus japonicus (a determinate-type nodulating plant responding to 18:1 LCOs) did not inhibit nodulation by Mesorhizobium loti. Other indeterminate-type nodulating plants showed the same inhibiting response toward SA, whereas SA did not inhibit the nodulation of other determinate-type nodulating plants. SA may be a useful tool for studying fundamental differences between signal transduction pathways of indeterminate- and determinate-type nodulating plants.  相似文献   

2.
Synthesis of chitin oligosaccharides by NodC is the first committed step in the biosynthesis of rhizobial lipochitin oligosaccharides (LCOs). The distribution of oligosaccharide chain lengths in LCOs differs between various Rhizobium species. We expressed the cloned nodC genes of Rhizobium meliloti, R. leguminosarum bv. viciae, and R. loti in Escherichia coli. The in vivo activities of the various NodC proteins differed with respect to the length of the major chitin oligosaccharide produced. The clearest difference was observed between strains with R. meliloti and R. loti NodC, producing chitintetraose and chitinpentaose, respectively. In vitro experiments, using UDP-[14C]GlcNAc as a precursor, show that this difference reflects intrinsic properties of these NodC proteins and that it is not influenced by the UDP-GlcNAc concentration. Analysis of oligosaccharide chain lengths in LCOs produced by a R. leguminosarum bv. viciae nodC mutant, expressing the three cloned nodC genes mentioned above, shows that the difference in oligosaccharide chain length in LCOs of R. meliloti and R. leguminosarum bv. viciae is due only to nodC. The exclusive production of LCOs which contain a chitinpentaose backbone by R. loti strains is not due to NodC but to end product selection by Nod proteins involved in further modification of the chitin oligosaccharide. These results indicate that nodC contributes to the host specificity of R. meliloti, a conclusion consistent with the results of several studies which have shown that the lengths of the oligosaccharide backbones of LCOs can strongly influence their activities on host plants.  相似文献   

3.
Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).  相似文献   

4.
The nodulation genes of rhizobia are regulated by the nodD gene product in response to host-produced flavonoids and appear to encode enzymes involved in the production of a lipo-chitose signal molecule required for infection and nodule formation. We have identified the nodZ gene of Bradyrhizobium japonicum, whose product is required for the addition of a 2-O-methylfucose residue to the terminal reducing N-acetylglucosamine of the nodulation signal. This substitution is essential for the biological activity of this molecule. Mutations in nodZ result in defective nodulation of siratro. Surprisingly, although nodZ clearly codes for nodulation function, it is not regulated by NodD and, indeed, shows elevated expression in planta. Therefore, nodZ represents a unique nodulation gene that is not under the control of NodD and yet is essential for the synthesis of an active nodulation signal.  相似文献   

5.
6.
Lipo-chitin oligosaccharides (LCOs) are usually produced and isolated for structural analysis from bacteria cultured under laboratory rather than field conditions. We have studied the influence of bacterial growth temperature on the LCO structures produced by different Rhizobium leguminosarum strains, using thin-layer chromatographic, high-performance liquid chromatographic, and mass spectrometric analyses. Wild-type R. leguminosarum bv. viciae A1 was shown to produce larger relative amounts of nodX-mediated, acetylated LCOs at 12 degrees C than at 28 degrees C, indicating that the activity of nodX (a gene encoding an LCO O-acetyl transferase) is temperature dependent. Interestingly, symbiotic resistance genes sym1 and sym2 found in primitive pea cultivars are also temperature sensitive, only being active at low temperatures, at which they block nodulation by R. leguminosarum bv. viciae strains lacking nodX. We therefore propose that the gene-for-gene relationship between plant and bacterium has a temperature-sensitive mechanism as an adaptation to environmental conditions. An R. leguminosarum bv. trifolii strain was also shown to produce larger relative amounts of nodX-mediated, acetylated LCOs at 12 degrees C than at 28 degrees C. The major components synthesized by the two strains are produced at both temperatures but in different relative amounts, while some minor components are only produced at one of the two temperatures.  相似文献   

7.
DNA sequencing of the nodIJ region from Rhizobium leguminosarum biovar trifolii revealed the nodT gene immediately downstream of nodJ. DNA hybridizations using a nodT-specific probe showed that nodT is present in several R. leguminosarum strains. Interestingly, a flavonoid-inducible nodT gene homologue in R. leguminosarum bv. viciae is not in the nodABCIJ operon but is located downstream of nodMN. The sequence of the nodT gene from bv. viciae was determined and a comparison of the predicted amino-acid sequences of the two nodT genes shows them to be conserved; the predicted protein sequences appear to have a potential transit sequence typical of outer-membrane proteins. Mutations affecting nodT in either biovar had no observed effect on nodulation of the legumes tested.  相似文献   

8.
9.
Rhizobium leguminosarum bv. viciae, which nodulates pea and vetch, makes a mixture of secreted nodulation signals (Nod factors) carrying either a C18:4 or a C18:1 N-linked acyl chain. Mutation of nodE blocks the formation of the C18:4 acyl chain, and nodE mutants, which produce only C18:1-containing Nod factors, are less efficient at nodulating pea. However, there is significant natural variation in the levels of nodulation of different pea cultivars by a nodE mutant of R. leguminosarum bv. viciae. Using recombinant inbred lines from two pea cultivars, one which nodulated relatively well and one very poorly by the nodE mutant, we mapped the nodE-dependent nodulation phenotype to a locus on pea linkage group I. This was close to Sym37 and PsK1, predicted to encode LysM-domain Nod-factor receptor-like proteins; the Sym2 locus that confers Nod-factor-specific nodulation is also in this region. We confirmed the map location using an introgression line carrying this region. Our data indicate that the nodE-dependent nodulation is not determined by the Sym2 locus. We identified several pea lines that are nodulated very poorly by the R. leguminosarum bv. viciae nodE mutant, sequenced the DNA of the predicted LysM-receptor domains of Sym37 and PsK1, and compared the sequences with those derived from pea cultivars that were relatively well nodulated by the nodE mutant. This revealed that one haplotype (encoding six conserved polymorphisms) of Sym37 is associated with very poor nodulation by the nodE mutant. There was no such correlation with polymorphisms at the PsK1 locus. We conclude that the natural variation in nodE-dependent nodulation in pea is most probably determined by the Sym37 haplotype.  相似文献   

10.
We have analyzed the nucleotide sequences of the nodX genes from two strains of Rhizobium leguminosarum bv. viciae able to nodulate Afghan peas (strains A1 and Himalaya) and from two strains of R. leguminosarum bv. trifolii (ANU843 and CSF). The nodX genes of strains A1 and ANU843 were shown to be functional for the induction of nodules on Afghan peas. To analyze the cause of phenotypic differences of strain A1 and strain TOM we have studied the composition of the lipochitin-oligosaccharides (LCOs) produced by strain A1 after induction by the flavonoid naringenin or various pea root exudates. The structural analysis of the LCOs by mass spectrometry revealed that strain A1 synthesizes a family of at least 23 different LCOs. The use of exudates instead of naringenin resulted only in quantitative differences in the ratios of various LCOs produced.  相似文献   

11.
By using cloned Rhizobium meliloti, Rhizobium leguminosarum, and Rhizobium sp. strain MPIK3030 nodulation (nod) genes as hybridization probes, homologous regions were detected in the slow-growing soybean symbiont Bradyrhizobium japonicum USDA 110. These regions were found to cluster within a 25-kilobase (kb) region. Specific nod probes from R. meliloti were used to identify nodA-, nodB-, nodC-, and nodD-like sequences clustered on two adjacent HindIII restriction fragments of 3.9 and 5.6 kb. A 785-base-pair sequence was identified between nodD and nodABC. This sequence contained an open reading frame of 420 base pairs and was oriented in the same direction as nodABC. A specific nod probe from R. leguminosarum was used to identify nodIJ-like sequences which were also contained within the 5.6-kb HindIII fragment. A nod probe from Rhizobium sp. strain MPIK3030 was used to identify hsn (host specificity)-like sequences essential for the nodulation of siratro (Macroptilium atropurpureum) on a 3.3-kb HindIII fragment downstream of nodIJ. A transposon Tn5 insertion within this region prevented the nodulation of siratro, but caused little or no delay in the nodulation of soybean (Glycine max).  相似文献   

12.
13.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

14.
Cultivar Afghanistan peas are resistant to nodulation by many strains of Rhizobium leguminosarum bv. viciae but are nodulated by strain TOM, which carries the host specificity gene nodX. Some strains that lack nodX can inhibit nodulation of cv. Afghanistan by strain TOM. We present evidence that this "competitive nodulation-blocking" (Cnb) phenotype may result from high levels of Nod factors inhibiting nodulation of cv. Afghanistan peas. The TOM nod gene region (including nodX) is cloned on pIJ1095, and strains (including TOM itself) carrying pIJ1095 nodulate cv. Afghanistan peas very poorly but can nodulate other varieties normally. The presence of pIJ1095, which causes increased levels of Nod factor production, correlates with Cnb. Nodulation of cv. Afghanistan by TOM is also inhibited by a cloned nodD gene that increases nod gene expression and Nod factor production. Nodulation of cv. Afghanistan can be stimulated if nodD on pIJ1095 is mutated, thus severely reducing the level of Nod factor produced. Repression of nod gene expression by nolR eliminates the Cnb phenotype and can stimulate nodulation of cv. Afghanistan. Addition of Nod factors to cv. Afghanistan roots strongly inhibits nodulation. The Cnb+ strains and added Nod factors inhibit infection thread initiation by strain TOM. The sym2A allele determines resistance of cv. Afghanistan to nodulation by strains of R. leguminosarum bv. viciae lacking nodX. We tested whether sym2A is involved in Cnb by using a pea line carrying the sym2A region introgressed from cv. Afghanistan; nodulation in the introgressed line was inhibited by Cnb+ strains. Therefore, the sym2A region has an effect on Cnb, although another locus (or loci) may contribute to the stronger Cnb seen in cv. Afghanistan.  相似文献   

15.
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.  相似文献   

16.
The patterns of O-acetylation of the exopolysaccharide (EPS) from the Sym plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii strain LPR5, R. leguminosarum bv. trifolii strain ANU843 and R. leguminosarum bv. viciae strain 248 were determined by 1H and 13C NMR spectroscopy. Beside a site indicative of the chromosomal background, these strains have one site of O-acetylation in common, namely residue b of the repeating unit. The O-acetyl esterification pattern of EPS of the Sym plasmid-cured derivatives of strains LPR5, ANU843, and 248 was not altered by the introduction of a R. leguminosarum bv. viciae Sym plasmid or a R. leguminosarum bv. trifolii Sym plasmid. The induction of nod gene expression by growth of the bacteria in the presence of Vicia sativa plants or by the presence of the flavonoid naringenin, produced no significant changes in either amount or sites of O-acetyl substitution. Furthermore, no such changes were found in the EPS from a Rhizobium strain in which the nod genes are constitutively expressed. The substitution pattern of the exopolysaccharide from R. leguminosarum is, therefore, determined by the bacterial genome and is not influenced by genes present on the Sym plasmid. This conclusion is inconsistent with the suggestion of Philip-Hollingsworth et al. (Philip-Hollingsworth, S., Hollingsworth, R. I., Dazzo, F. B., Djordjevic, M. A., and Rolfe, B. G. (1989) J. Biol. Chem. 264, 5710-5714) that nod genes of R. leguminosarum bv. trifolii, by influencing the acetylation pattern of EPS, determine the host specificity of nodulation.  相似文献   

17.
Rhizobium leguminosarum biovar viciae strain 3841 is a motile alpha-proteobacterium that can establish a nitrogen-fixing symbiosis within the roots of pea plants. In order to determine the contribution of chemotaxis to the lifestyle of R. leguminosarum, we have characterized the function of two chemotaxis gene clusters (che1 and che2) in controlling motility behaviour. We have found that both chemotaxis gene clusters modulate the motility swimming bias of R. leguminosarum cells and that the che1 cluster is the major pathway controlling swimming bias and chemotaxis. The che2 cluster also contributes to swimming bias, but has a minor effect on chemotaxis. Using competitive nodulation assays, we have demonstrated that a functional che1 cluster, but not the che2 cluster, promotes competitive nodulation of the peas. This finding implies that the environmental cue(s) triggering chemotaxis of R. leguminosarum bv. viciae cells towards the roots of pea and facilitating colonization are likely to be processed through the che1 cluster despite the contribution of both che clusters to swimming behaviour. A phylogenetic analysis of the distribution of che1 and che2 orthologues in the alpha-proteobacteria together with our results allow us to propose that che1 homologues are major controllers of chemotaxis and host association in the Rhizobiaceae.  相似文献   

18.
In the biosynthesis of lipochitin oligosaccharides (LCOs) theRhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence ofnodA in thenodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which thenodA, nodB andnodC genes are separately present on different plasmids. Efficient nodulation was only obtained ifnodC was present on a low-copy-number vector. Our results confirm the notion thatnodA ofRhizobium leguminosarum biovarviciae is essential for nodulation onVicia. Surprisingly, replacement ofR. l. bv.viciae nodA by that ofBradyrhizobium sp. ANU289 results in a nodulation-minus phenotype onVicia. Further analysis revealed that theBradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of theR. l. bv.viciae nodF E-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion thatnodA is a commonnod gene should be revised.  相似文献   

19.
Only some strains of Rhizobium leguminosarum biovar viciae can efficiently nodulate varieties of peas such as cv. Afghanistan, which carry a recessive allele that blocks efficient nodulation by most western isolates of R. I. viciae. One strain (TOM) which can nodulate cv. Afghanistan peas has a gene (nodX) that is required to overcome the nodulation resistance. Strain TOM makes significantly lower amounts of lipo-oligosaccharide nodulation factors than other strains of R. I. viciae. and this effect appears to be due to lower levels of nod gene induction. These nodulation factors are similar to those from other R. I. viciae. strains in that they consist of an oligomer of four or five β1-4-linked N-acetylglucosamine residues in which the terminal non-reducing glucosamine carries an O-acetyl group and a C18:4 or C18:1N-acyl group. However, one of the nodulation factors made by strain TOM differs from the factors made by other strains of R. I. viciae. in that it carries an O-acetyl group on the C-6 of the reducing N-acetylglucosamine residue. This acetylation is NodX-dependent and the pentameric nodulation factor is acetylated on the reducing N-acetylglucosamine residue whereas the tetrameric nodulation factor is not. Although the nodL gene product is also an O-acetyl transferase (it O-acetylates the C-6 of the terminal non-reducing glucosamine), there is very little similarity between the amino acid sequences of these two acetyl transferases.  相似文献   

20.
In the biosynthesis of lipochitin oligosaccharides (LCOs) theRhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence ofnodA in thenodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which thenodA, nodB andnodC genes are separately present on different plasmids. Efficient nodulation was only obtained ifnodC was present on a low-copy-number vector. Our results confirm the notion thatnodA ofRhizobium leguminosarum biovarviciae is essential for nodulation onVicia. Surprisingly, replacement ofR. l. bv.viciae nodA by that ofBradyrhizobium sp. ANU289 results in a nodulation-minus phenotype onVicia. Further analysis revealed that theBradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of theR. l. bv.viciae nodF E-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion thatnodA is a commonnod gene should be revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号