首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypothalamic evoked potentials to stimulation of the cervical portion of the vagus nerve and the sciatic nerve were recorded in experiments on cats anesthetized with chloralose and immobilized with succinylcholine. When both monopolar and bipolar recording techniques were used the focus of maximal activity of both "visceral" and "somatic" evoked potentials was located in the supramammillary and posterolateral region of the hypothalamus. Responses in the tuberal and anterior hypothalamus occurred in most experiments after a longer latent period, their amplitude was lower, and they were less stable. Evoked potentials in the focus of maximal activity of the posterior hypothalamus are similar in all parameters to responses of the mesencephalic reticular formation. Evoked potentials to stimulation of the visceral nerve have a higher threshold of generation and a lower amplitude than the "somatic" responses and they are inhibited more strongly when the frequency of stimulation is increased. Evoked potentials arising in the hypothalamus in response to stimulation of the vagus and sciatic nerves are regarded as nonspecific responses of reticular type.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 253–260, May–June, 1973.  相似文献   

2.
Location of aldehyde dehydrogenase (AldDG) and alcohol dehydrogenase (ADG) has been studied in 38 nuclei of the human brain. Neurons with a high AldDG activity predominate in the nucleus of the descending root of the trigeminal nerve, motor nuclei of the craniocerebral nerves (trigeminal, facial, abducent, blocking, sublingual, supraspinal), motor nuclei of the anterior horns of the spinal cord, lateral vestibular nucleus, posterior nucleus of the vagus nerve, pedunculopontine nucleus, superior salivary nucleus, and in the nucleus of Westphal-Edinger-Jacobovich. Neurons with a moderate AldDG activity predominate in the superior olivary complex, nucleus of the lateral loop, parabrachial (pigmented) mesencephalic nucleus and reticular lateral nucleus. A low enzymatic activity is specific for neurons of the pons proper, inferior vestibular nucleus, trapezoid body of the inferior olivary complex, dentate nucleus of the cerebellum, reticular nucleus of the tegmen of Bekhterev's pons and posterior nucleus of Gudden's suture. A high ADG activity is revealed in piriform neurons of the cerebellar cortex. Functional importance of ADG and AldDG activity in the brain is discussed.  相似文献   

3.
Activity of fastigial neurons was investigated during stimulation of peripheral nerves of the fore- and hind limbs and also of brain-stem nuclei — the lateral reticular nucleus and inferior olive, transmitting indirect peripheral impulses to the cerebellum, in cats under superficial pentobarbital anesthesia. Stimulation of the nerves was accompanied by excitation of most neurons tested, reflected in repeated discharges to a single stimulus. Three main groups of responses latencies were distinguished: Those corresponding to conduction of peripheral impulses along slow and (partly) fast spinocerebellar tracts were predominant. Stimulation of the lateral reticular nucleus and inferior olive was accompanied by mono- and polysynaptic, and also by antidromic activation of fastigial neurons. Monosynaptic and antidromic activation of neurons are regarded as evidence of the presence of direct reticulo-and olivofastigial projections and of feedback in the system of these inputs into the nucleus fastigius respectively.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 168–178, March–April, 1981.  相似文献   

4.
Rearrangement of the parameters of scratch and locomotor generators produced by electrical stimulation of the inferior olive and nucleus reticularis lateralis as well as the cerebellar fastigial nucleus and nucleus interpositus was investigated in decerebrate immobilized cats. Results showed that a comparable rearrangement of the time course of activity in both locomotor and scratch generators was produced by altering the nature of signals proceeding along mossy and climbing fibers alike. Maximum rearrangement of scratch and locomotor generator activity, as induced by electrical activation of the inferior olive and lateral reticular nucleus, is observed during the first half of flexor half-center operation in these generators. The scratch (unlike the locomotor) generator typically shows considerably rearranged efferent activity following electrical activation of nuclei of the cerebellum and cerebellar afferents. The article discusses mechanisms of cerebellar origin which may be responsible for exerting a corrective action on scratch and locomotor generators during change in the phase and amplitude parameters of cerebellar input signals.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 2, pp. 131–140, March–April, 1992.  相似文献   

5.
Interaction between spike responses of 41 cerebellar cortical neurons to electrical stimulation of the two forelimbs with different intervals between stimuli were studied in cats anesthetized with chloralose and pentobarbital. The responsiveness of neurons with a phasic type of discharge to testing stimulation of the limb was reduced for 300–500 msec or longer after conditioning stimulation of the other limb. Interaction between the responses was less clear in neurons with a tonic type of response. Interaction was absent or was summating in character if the stimuli were applied at the same times. Only if the intertrial intervals were 50–150 msec was regular inhibition of the responses of tonic type to the testing stimulus observed. It is postulated that the nucleus of the inferior olive participates in the interaction between phasic unit responses during simultaneous stimulation of the two limbs or to stimulation separated by short intervals (under 30 msec). With longer intervals between stimuli, interaction between responses of either type is connected with involvement of the lateral reticular nucleus. In the process of interaction competitive relations may develop between responses caused by impulses reaching neurons of the cerebellar cortex along climbing and mossy fibers.  相似文献   

6.
In response to stimulation of the posterior lateral nucleus in unanesthetized cats immobilized with D-tubocurarine an evoked potential consisting of three components with a latent period of 3–5 msec appeared in area 5b of the suprasylvian gyrus. All three components were reversed at about the same depth in the cortex (1500–1600 µ). Reversal of the potential shows that it is generated in that area by neurons evidently located in deeper layers of the cortex and is not conducted to it physically from other regions. Responses of 53 spontaneously active neurons in the same area of the cortex to stimulation of the posterior lateral nucleus were investigated. A characteristic feature of these reponses was that inhibition occurred nearly all of them. In 22 neurons the responses began with inhibition, which lasted from 30 to 400 msec. In 30 neurons inhibition appeared immediately after excitation while one neuron responded by excitation alone. The latent periods of the excitatory responses varied from 3 to 28 msec. The short latent period of the evoked potentials and of some single units responses (3–6 msec) confirms morphological evidence of direct connections between the posterior lateral nucleus and area 5b of the suprasylvian gyrus. Repetitive stimulation of that nucleus led to strengthening of both excitation and inhibition. Influences of the posterior lateral nucleus were opposite to those of the specific nuclei: the posterior ventrolateral nucleus and the lateral and medial geniculate bodies. Stimulation of the nonspecific reticular nucleus, however, evoked discharges from neurons like those produced by stimulation of the posterior lateral nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 502–509, September–October, 1973.  相似文献   

7.
Tectal evoked potentials to stimulation of the facial nerve, containing afferent fibers of nonolfactory chemoreception, in the carp are positive evoked potentials with a latent period of 5 to 25 msec which show no phase shift as the microelectrode is advanced to a depth of 600 µ. Depending on the amplitude and latency of evoked potentials seven active zones differing in one or both parameters were distinguished in the ipsilateral tectum mesencephali. The role of impulses from the medulla in the mechanism of tectal evoked potentials to facial nerve stimulation is proved by differences in latent periods and disappearance of the tectal response (although it is preserved in the primary center) after severance of connections between the two parts of the brain. Descending influences from the tectum on the primary center were found: its extirpation disturbs evoked potential generation in several parts of the medullla, so that they either disappear completely or their parameters are modified.A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 39–46, January–February, 1976.  相似文献   

8.
The effect of stimulation of the ipsilateral and contralateral red nuclei on motoneurons of the hypoglossal nucleus was studied in cats anesthetized with chloralose and pentobarbital. In 35 (69%) of the 51 motoneurons tested, PSPs were generated in response to stimulation of the red nuclei by series of 3 to 5 stimuli of threshold strength and with a frequency of 500–600/sec. Of this number, 33 motoneurons responded to stimulation by EPSPs, whose latent periods varied from 3.5 to 14.0 msec (mean value for the ipsilateral red nucleus 5.7±0.75, for the contralateral nucleus 6.8±0.8 msec), whereas two motoneurons responded (after 6.2 msec) by IPSPs. Of the 35 motoneurons responding to stimulation of the red nuclei, stimulation of the lingual nerve evoked EPSPs in 31 and IPSPs in 4 (two of them were inhibited by rubrofugal impulses). IPSPs were generated as a result of stimulation of the lingual nerve in 16 motoneurons which did not respond to rubrofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 62–66, January–February, 1978.  相似文献   

9.
Potentials evoked in nuclei of the reticular formation by electrodermal stimulation of the limbs were investigated in acute experiments on unanesthetized, immobilized rats during cooling of the somatosensory cortex in the area of representation of one forelimb. Evoked potentials in the reticular formation were found to depend on the degree of cold inhibition of the cortical primary response to the same stimulation. The peak time of the main negative wave increased from 40–50 to 60–80 msec with a simultaneous decrease in its amplitude or its total disappearance in the case of deep cooling of the cortex. Cooling of the cortex had a similar although weaker effect on the earlier wave of the evoked potential with a peak time of 14 msec, recorded in the ventral reticular nucleus. In parallel recordings of potentials evoked by stimulation of other limbs they remained unchanged at these same points of the reticular formation or were reduced in amplitude while preserving the same temporal parameters. Cooling of the cortex thus selectively delays the development and reduces the amplitude of the response to stimulation of the limb in whose area of representation transformation of the afferent signal into a corticofugal volley is blocked. Consequently the normal development of both late and early components of the potential evoked in the reticular formation by somatic stimulation requires an additional volley, descending from the cortex, and formed as a result of transformation of the same afferent signal in the corresponding point of the somatosensory cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 32–38, January–February, 1981.  相似文献   

10.
The effects of afferent vestibular impulses on single pontine reticular formation units and on a small filament of the IIIrd cranial nerve were recorded with tungsten microelectrodes in 40 curarized guinea pigs. Single-shock and repetitive electrical stimulations were applied by means of stimulating electrodes inserted bilaterally into the perilymphatic space of single ampullae of the anterior and lateral semicircular canals. The reticular unitary response consisted mainly in excitation of the resting discharge rate: most units showed vestibular convergence being affected by separate stimulation of the single four ampullae. the reticular evoked field and unitary potentials accounted for latency values ranging from 0.3 to 2.5 msec. As for the early latencies they can be interpreted as responses mediated by direct vestibulo-reticular fibres. A delimited vestibular projection field in the parameidan pontine reticular formation was not identified.  相似文献   

11.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

12.
Acute experiments on cats anesthetized with chloralose and pentobarbital showed that excitation of fast-conducting (130 m/sec) reticulospinal fibers, arising during stimulation of the ipsilateral medullary reticular gigantocellular nucleus evoked monosynaptic EPSPs in motoneurons of the accessory nerve nucleus. The EPSPs had latent periods of between 0.6 and 1.0 msec (mean 0.7 msec), they reached their maximal amplitude (4.0 mV) after 2.0–2.5 msec, and lasted about 10 msec. The EPSPs underwent only weak potentiation through the different types of stimulation of the gigantocellular nucleus and were not transformed into action potentials.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 62–66, January–February, 1980.  相似文献   

13.
The sequence of origination of the evoked potentials in different regions of the septum amygdale and the reticular formation in response to the gradually increasing stimulation of the hypothalamic ventromedial nucleus was studied. As demonstrated, excitation that initially occurs in the hypothalamic ventromedial nuclei embraced first the structures of the septum and rostral reticular formation and then more caudal region of the reticular formation and amygdala.  相似文献   

14.
Stimulation of the head of the caudate nucleus in cats anesthetized with chloralose and pentobarbital evoked spike responses of the Purkinje cells and other cerebellar cortical neurons in the paramedian lobes, lobulus simplex, and the tuber of the vermis. Phasic responses in the form of simple discharges (on account of activation of the neurons through mossy fibers) appeared mainly after a latent period of 5–12 and 14–20 msec; the latent period of responses consisting of complex discharges (on account of activation of Purkinje cells through climbing fibers) was 5–6, 9–22 msec, or more. Depending on the latent period, the spike responses differed in their rhythm of generation. In response to stimulation of the caudate nucleus with a frequency of 4–6/sec recruiting responses were found. An inhibitory pause was an invariable component of the tonic responses. During stimulation of the globus pallidus responses of the same types (phasic and tonic) appeared as during stimulation of the caudate nucleus, but they differed in the distribution of the neurons by latent period of spike responses. The minimal latent period was 4 msec. Recruiting also was observed during repetitive stimulation of the globus pallidus. During stimulation of the substantia nigra Pukinje cells activated by climbing fibers responded. Evoked complex discharges appeared after a stable latent period of 8.5±0.3 msec. Arguments are put forward regarding the role of the substantia nigra, the globus pallidus, nuclei of the inferior olive, and also the thalamic nuclei in the mechanism of caudato-cerebellar oligosynaptic and polysynaptic connections.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 375–384, July–August, 1978.  相似文献   

15.
Data on the evolution of the visual system in vertebrate phylogeny are described. Visual projections are demonstrated in the telencephalon of cyclostomata (lampreys). The existence of a retino-thalamo-telencephalic pathway is demonstrated in elasmobranchs (skates). Two visual pathways are present in amphibians (frogs) and reptiles (turtles): retino-thalamo-telencephalic and retino-tecto-thalamo-telencephalic, and these overlap partly at the thalamic level in the lateral geniculate nucleus and completely in the telencephalon. In turtles the earliest visual and tectal impulses relay on their way to the telencephalon in the lateral geniculate body, and later impulses relay in the nucleus rotundus. In mammals (rats) visual tecto-cortical connections are seen; judging from the latent period of potentials arising in the visual cortex in response to stimulation of the superior colliculi these connections have one synaptic relay in the thalamus. The much shorter latent periods of visual evoked potentials recorded in the tectum of the monkey than in turtles (under identical chronic experimental conditions) confirm the views of morphologists on the progressive development of the tectal division of the visual system in vertebrate phylogeny. It is concluded that corticalization of both divisions of the visual system, i.e., the existence of telencephalic representation, appears in the early stages of vertebrate evolution.  相似文献   

16.
Field potentials evoked in the graunular layer of the cerebellar paramedian lobule of unanesthetized cats in response to stimulation of the sensomotor cortex and limb nerves contained slow negative waves, appearing after a long latent period, which were generated by granule cells. In the case of nerve stimulation this component was recorded both inside and outside the projection zone of the corresponding limb. Cortical stimulation by single stimuli or series of stimuli not more than 1.8–2.5 times above threshold strength led to the appearance of evoked potentials only inside the corresponding projection zone. The long-latency component of field potentials evoked by cerebral stimulation followed high frequencies of repetitive stimulation and was less sensitive to the action of barbital anesthesia than the analogous component of potentials evoked by nerve stimulation. In the case of combined cerebral and nerve stimulation the long-latency components underwent summation. It is concluded that mossy fibers of slowly-conducting spino- and cerebrocerebellar tracts innervate different granule cells in the cerebellar cortex.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 379–385, July–August, 1982.  相似文献   

17.
The descending influences of the septal nuclei (lateral nucleus--LSN and bed nucleus stria terminalis--BNST) on activity of viscero-sensory neurons of the nucleus of tractus solitarius (NTS) identified by stimulation of cervical part of the n. vagus were investigated in the cat anaesthetised by chloraloze-nembutal combination. It was found that out of 70 units recorded in the NTS area 50 were identified as those of primary and secondary input vagal neurons. Influence of single, paired and frequency stimulation on the septal structures was studied on these neurons. It was revealed that 30% (15 un) reacted by phase-specific response to the single stimulation of the septal nuclei. The latent period of initial excitation was in the range 5-25 ms. During the paired stimulation these neurons were not able to react to the second stimulus for the equal 10-300 ms. It was revealed that 34% (17 un) of the identified vagal neurons reacted by a tonic change of their spontaneous activity. The increase of frequency stimulation to 20 Hz evoked different changes of the rhythmical activity of the vagal neurons (increase, diminishing or inhibition). The study of interaction between central and peripheral signals in the solitary neurons induced blocking influence of descending septal discharge on the vagal test response. It is possible that the septal downward impulses reach the vago-sensitive solitary neurons indirectly through other structures of the limbic brain (amygdala, hypothalamus) and participate in modulation of the spontaneous activity of these neurons.  相似文献   

18.
Averaged evoked potentials in the inferior colliculus (IC), medial geniculate nucleus (MG) and reticular formation (RF) of chronically implanted and freely moving cats were measured using auditory step functions in the form of tone bursts of 2000 Hz. The most prominent components of the AEP of the inferior colliculus were a positive wave of 13 msec and a negative wave of 40–55 msec latency. The AEP of the medial geniculate nucleus was characterized by a large negative wave peaking at 35–40 msec. During spindle sleep and slow wave sleep stages changes in the AEPs of both nuclei occured.Transient evoked responses of the inferior colliculus, medial geniculate nucleus and reticular formation were transformed to the frequency domain using the Laplace transform (one sided Fourier transform) in order to obtain frequency characteristics of the systems under study. The amplitude characteristics of IC, MG. and RF obtained in this way revealed maxima in alpha (8–13 Hz), beta (18–35 Hz) and higher frequency (50–80 Hz) ranges. During spindle sleep stage a maximum in the theta frequency range (3–8 Hz) and during slow wave sleep maximum in the delta (1–3 Hz) frequency range appeared in the amplitude characteristics of these nuclei.The amplitude characteristics of the inferior colliculus and medial geniculate nucleus were compared with the amplitude characteristics of other brain structures. The comparison of AEPs and amplitude frequency characteristics obtained using these AEPs reveals that the existence of a number of peaks (waves) with different latencies in the time course does not necessarily indicate the existence of different functional structures or neural groups giving rise to these waves. The entire time course of evoked potentials and not the number and latencies of the waves, carries, the whole information concerning different activities and frequency selectivities of brain structures.Supported by Turkish Scientific and Technical Research Council Grant TAG-266.Presented in Part at the VIIIth International Congress of Electroencephalography and Clinical Neurophysiology in Marseilles, September 1–7, 1973.  相似文献   

19.
Short latency vestibular evoked potentials (VsEPs) to angular acceleration impulses (maximal intensity 20,000°/sec2, rise time 1.5–3 msec) were recorded by skin electrodes in cats before and after various surgical procedures. Under general anesthesia, the animals underwent unilateral labyrinthectomy and the VsEPs in response to stimulation of the remaining inner ear in the plane of the lateral semicircular canal (SCC) with the head flexed 20°–25° were recorded as a baseline. The lateral SCC was then selectively obliterated near its ampulla. This induced major changes in the VsEPs recorded in response to stimulation of the remaining inner ear in this plane: the first 2 VsEP waves were absent, and only longer latency, smaller amplitude waves were present in response to both clockwise and counterclockwise stimulation. On the other hand, obliteration of the anterior and posterior SCCs and, in addition, destruction of both maculae were without major effects on the first 2 VsEP waves in response to excitatory stimulation. The results confirm that when the head is flexed 20°–25° and stimulated with angular acceleration impulses in the horizontal plane, the major site of initiation of the VsEPs in cats and probably in man is the crista ampullaris of the lateral SCC.  相似文献   

20.
Boundaries of vestibular projections in the temporal cortex during stimulation of the vestibular nerve were studied in cats anesthetized with pentobarbital and chloralose or chloralose alone. The caudal boundary of the vestibular zone was shown to run along the anterior ectosylvian gyrus. A focus of evoked activity was found in the suprasylvian sulcus or 1–2 mm rostrally to it. All short-latency evoked potentials recorded during vestibular nerve stimulation in the temporal region caudally to the zone mentioned above were connected with the spread of current to auditory structures. To verify the extent of spread of the stimulating current, focal potentials were recorded in the vestibular and superior olivary groups of nuclei. Special experiments were carried out to study the topography of these potentials at the level of bulbar structures during stimulation of vestibular and auditory nerves. According to the results, there is no second vestibular area in the temporal cortex in cats. Vestibular afferentation is projected mainly into the contralateral hemisphere, and the response latency is 5.2±0.7 msec. The ipsilateral evoked potentials had a long latent period (8.4±1.3 msec), and their amplitude depended on the type of anesthesia; it was accordingly postulated that additional synaptic relays exist in this vestibulocortical pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号