首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
OBJECTIVES: Free radical scavengers can protect against the genotoxicity induced by chemical carcinogens by decreasing oxidative stress. The protective effect of the antioxidant melatonin was studied in the kidney and liver of rats treated with the kidney-specific carcinogen potassium bromate (KBrO(3)). The major endpoint of oxidative damage measured in this report was lipid peroxidation. METHODS: Four groups of male rats (controls, melatonin-injected [10 mg/kg x4], KBrO(3)-injected [100 mg/kg], and melatonin+-KBrO(3)) were used in the current study. The concentrations of malondialdehyde (MDA) were assayed as an index of oxidatively damaged lipid in the kidney and liver. RESULTS: Twenty-four hours after KBrO(3) administration, MDA levels were significantly increased in the kidney while the increase in the liver was not statistically significant compared to levels in control rats. The percentage increases in lipid peroxidation products were 32.8% and 12.6% for the kidney and liver, respectively. In rats given melatonin 30 minutes before KBrO(3), and three more times after KBrO(3) (i.e., every 6 hours), the increase in MDA levels was reduced in the kidney. Histopathological examination demonstrated marked changes in the structure of the kidney and slight changes in the liver. In the kidney, microscopic examination revealed atypical tubules, atypical hyperplasia, hyaline droplet degeneration, necrotic changes and stratified squamous cell metaplasia. Again, melatonin treatment inhibited the tissue damage associated with KBrO(3) administration. CONCLUSION: These results show that melatonin as an antioxidant and free radical scavenger can prevent oxidative stress induced by the carcinogen KBrO(3).  相似文献   

2.
The rat heart protection offered by vitamin E against oxidative stress after ischaemia-reperfusion was studied by using a new methodological approach. Functional recovery of hearts from ischaemia-reperfusion was correlated with a traditional index of oxidative stress such as lipid peroxidation and with antioxidant capacity and susceptibility to oxidants of the tissue evaluated by enhanced chemiluminescence techniques. Rats were treated with ten daily i.m. injections of 100 mg/kg body weight of vitamin E. The functional recovery during reperfusion (20 min, following 45 min ischaemia) of Langendorff preparations from control (vehicle-injected) and vitamin E treated rats was evaluated in terms of heart rate, left ventricular developed pressure (LVDP), double product (= heart rate. LVDP) and coronary flow recovery. Vitamin E treatment significantly improved functional recovery of heart rate, LVDP, double product and coronary flow. It also increased the level of vitamin E and reduced the levels of both malondialdehyde and hydroperoxides in the heart tissue at the end of the ischaemia-reperfusion protocol. In contrast, it did not affect the antioxidant capacity and the response of heart homogenates to in vitro oxidative stress measured after ischaemia-reperfusion. These results show a protective action of vitamin E treatment against lipid peroxidation and cardiac dysfunction associated with ischaemia-reperfusion. Although the precise mechanism of this protection is not evident, our model in part suggests a role of vitamin E other than as a free radical scavenger.  相似文献   

3.
Acrylamide (ACR), used in many fields from industrial manufacturing to laboratory personnel work is also formed during the heating process through interactions of amino acids. Therefore ACR poses a significant risk to human health. This study aimed to elucidate whether resveratrol (RVT) treatment could modulate ACR-induced oxidative DNA damage and oxidative changes in rat brain, lung, liver, kidney and testes tissues. Rats were divided into four groups as control (C); RVT (30 mg/kg i.p. dissolved in 0.9% NaCl), ACR (40 mg/kg i.p.) and RVT + ACR groups. After 10 days rats were decapitated and tissues were excised. 8-hydroxydeoxyguanosine (8-OHdG) is a biomarker of oxidative DNA damage. 8-OHdG content in the extracted DNA solution was determined by enzyme-linked immunosorbent assay method. Malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase activity (MPO) were determined in tissues, while oxidant-induced tissue fibrosis was determined by collagen contents. Serum enzyme activities, cytokine levels, leukocyte apoptosis were assayed in plasma. As an indicator of oxidative DNA damage, 8-OHdG levels significantly increased in ACR group and this was reversed significantly by RVT treatment. In ACR group, GSH levels decreased significantly while the MDA levels, MPO activity and collagen content increased in the tissues suggesting oxidative organ damage. In RVT-treated ACR group, oxidant responses reversed significantly. Serum enzyme activities, cytokine levels and leukocyte late apoptosis which increased following ACR administration, decreased with RVT treatment. Therefore supplementing with RVT can be useful in individuals at risk of ACR toxicity.  相似文献   

4.
Genotoxicity of anticancer drugs is of a special interest due to the risk of inducing secondary malignancies. Vitamin C (ascorbic acid) is a recognized antioxidant and, since human diet can be easily supplemented with vitamin C, it seems reasonable to check whether it can protect against DNA-damaging effects of antitumor drugs. In the present work the ability of vitamin C to modulate cytotoxic and genotoxic effects of a cisplatin analog, conjugate (NH3)2Pt(SeO3), in terms of cell viability, DNA damage and repair in human lymphocytes was examined using the trypan blue exclusion test and the alkaline comet assay, respectively. The conjugate evoked a concentration-dependent decrease in the cell viability, reaching nearly 50% at 250 microM. (NH3)2Pt(SeO3) at 1, 10 and 30 microM caused DNA strand breaks, measured as the increase in the comet tail moment of the lymphocytes. The treated cells were able to recover within a 30-min incubation in a drug-free medium at 37 degrees C. Vitamin C at 10 and 50 microM diminished the extent of DNA damage evoked by (NH3)2Pt(SeO3) but had no effect on the kinetics of DNA repair. The vitamin did not directly inactivate the conjugate. Lymphocytes treated with endonuclease III, which recognises oxidised pyrimidines, displayed a greater tail moment than those untreated with the enzyme, suggesting that the damages induced by the drug have, at least in part, an oxidative origin. Vitamin C can be considered a potential protective agent against side effects of antitumor drugs, but further research with both normal and cancer cells are needed to clarify this point.  相似文献   

5.
The ability of estrogens to protect against DNA damage induced by either hydrogen peroxide or arachidonic acid alone or in combination with Cu2+ was investigated. DNA strand breaks were determined by conversion of double stranded supercoiled ØX-174 RFI DNA to double stranded open circular DNA and linear single stranded DNA. Estradiol-17β significantly decreased the formation of single and double strand breaks in DNA induced by H2O2 alone or with Cu2+. Equilin (an equine estrogen) was more effective than estradiol-17β at the doses tested. Arachidonic acid in the presence of Cu2+ caused the formation of high levels of linear DNA which was protected by estrogen with equilen being more effective. These studies suggest that estrogens through this protective effect on DNA damage might contribute to cardioprotection.  相似文献   

6.
Polyunsaturated fats are the main target for lipid peroxidation and subsequent formation of mutagenic metabolites, but diets high in saturated fats are more strongly associated with adverse health effects. We show that the common saturated fatty acid, palmitic acid, is a potent inducer of DNA damage in an insulin-secreting cell line, and in primary human fibroblasts. Damage is not associated with upregulation of inducible nitric oxide synthase, but is prevented by two different antioxidants, alpha-lipoic acid and 3,3'-methoxysalenMn(III) (EUK134), which also partly prevent palmitic acid-induced apoptosis and growth inhibition. Since mutagenic metabolites can be formed from peroxidation of polyunsaturated fatty acids, co-administration of palmitic and a polyunsaturated fatty acid might be particularly harmful. Palmitic acid-induced DNA damage is instead prevented by linoleic acid, which is acting here as a protective agent against oxidative stress, rather than as a source of mutagenic metabolites. These results illustrate the complexity of the relationship of dietary fat intake to genotoxicity.  相似文献   

7.
The strict human pathogen Neisseria gonorrhoeae is exposed to oxidative damage during infection. N. gonorrhoeae has many defenses that have been demonstrated to counteract oxidative damage. However, recN is the only DNA repair and recombination gene upregulated in response to hydrogen peroxide (H(2)O(2)) by microarray analysis and subsequently shown to be important for oxidative damage protection. We therefore tested the importance of RecA and DNA recombination and repair enzymes in conferring resistance to H(2)O(2) damage. recA mutants, as well as RecBCD (recB, recC, and recD) and RecF-like pathway mutants (recJ, recO, and recQ), all showed decreased resistance to H(2)O(2). Holliday junction processing mutants (ruvA, ruvC, and recG) showed decreased resistance to H(2)O(2) resistance as well. Finally, we show that RecA protein levels did not increase as a result of H(2)O(2) treatment. We propose that RecA, recombinational DNA repair, and branch migration are all important for H(2)O(2) resistance in N. gonorrhoeae but that constitutive levels of these enzymes are sufficient for providing protection against oxidative damage by H(2)O(2).  相似文献   

8.
β-amyloid peptide (Aβ) is considered to be responsible for the formation of senile plaques,which is the hallmark of Alzheimer's disease (AD).Oxidative stress,manifested by protein oxidation andlipid peroxidation,among other alterations,is a characteristic of AD brain.A growing body of evidence hasbeen presented in support of Aβ_(1-40) forming an oligomeric complex that binds copper at a CuZn superoxidedismutase-like binding site. Aβ_(1-40)Cu(Ⅱ) complexes generate neurotoxic hydrogen peroxide (H_2O_2) from O_2via Cue reduction,though the precise reaction mechanism is unclear.The toxicity of Aβ_(1-40) or the Aβ_(1-40)Cu(Ⅱ)complexes to cultured primary cortical neurons was partially attenuated when ( )-α-tocopherol (vitamin E)as free radical antioxidant was added at a concentration of 100 μM.The data derived from lactate dehydro-genase (LDH) release and the formation of H_2O_2 confirmed the results from the MTT assay.These findingsindicate that copper binding to Aβ_(1-40) can give rise to greater production of H_2O_2, which leads to a break-down in the integrity of the plasma membrane and subsequent neuronal death.Groups treated with vitaminE exhibited much slighter damage,suggesting that vitamin E plays a key role in protecting neuronal cellsfrom dysfunction or death.  相似文献   

9.
Anthocyanins are flavonoids present in a variety of pigmented food and, like other flavonoids, seem to play a role in preventing human pathologies related to oxidative stress. In fact, anthocyanins have been shown to exert antiproliferative effects in cell cultures and exhibit antiinflammatory and vasoprotective activities in animal models. Although these biological activities have been related to their antioxidant properties, little is known on the molecular mechanism of action of anthocyanins. The effects of pretreatment with the anthocyanins delphinidin, cyanidin, and their glycoside and rutinoside derivatives against induction of DNA damage induced by tert-butyl-hydroperoxide (TBHP) were evaluated in rat smooth muscle and in rat hepatoma cell lines using alkaline single cell gel electrophoresis (Comet test). In addition, a possible protection exerted by anthocyanins on cell killing, lipid peroxidation, and redox state alterations induced by TBHP was also investigated. It was found that the treatment with TBHP induces the formation of DNA single strand breaks (SSB) and oxidised bases, along with cell killing, lipid peroxidation and redox state alteration. Our data demonstrate that anthocyanins are effective against cytotoxicity, DNA SSB formation and lipid peroxidation induced by TBHP, but they do not have any detectable effect against impairment by TBHP of cellular redox state and on protection against DNA bases oxidation. The presence of a sugar moiety in anthocyanin derivatives reduced this protective effect, mainly in rat hepatoma cells. The different activity of anthocyanins and their derivatives may be explained taking into account a structure/function relationship that could also influence anthocyanin intracellular localisation.  相似文献   

10.
Nitroxides block DNA scission and protect cells from oxidative damage.   总被引:1,自引:0,他引:1  
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.  相似文献   

11.
Qu B  Halliwell B  Ong CN  Lee BL  Li QT 《FEBS letters》2000,473(1):85-88
Long-term caloric restriction in rodents is known to decrease levels of oxidative damage, which may contribute to an 'anti-ageing' effect. We show here that a shorter period (10 months) of caloric restriction had only small effects on levels of oxidative DNA and protein damage in the livers of mice, but completely attenuated increased oxidative damage caused by the carcinogen clofibrate. Since clofibrate is thought to exert its actions by increasing oxidative damage, our data suggest that 10 months of caloric restriction can increase the resistance of tissues to agents inducing oxidative stress. This may be an important factor in explaining how caloric restriction decreases cancer incidence.  相似文献   

12.
This study was aimed to evaluate the effect of Strobilanthes crispus extract for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Incubation of postmitochondrial supernatant and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces lipid peroxidation and DNA damage to about 2.3-fold and 2.9-fold, respectively, as compared to control (P < 0.05). In lipid peroxidation protection studies, S. crispus treatment showed a dose-dependent inhibition (45–53% inhibition, P < 0.05) of Fe-NTA and H2O2 induced lipid peroxidation. Similarly, in DNA damage protection studies, S. crispus treatment also showed a dose-dependent inhibition (18–30% inhibition, P < 0.05) of DNA damage. In addition, the protection was closely related to the content of phenolic compounds as evident by S. crispus extract showing the value of 124.48 mg/g total phenolics expressed as gallic acid equivalent (GAE, mg/g of extract). From these studies, it is concluded that S. crispus inhibits peroxidation of membrane lipids and DNA damage induced by Fe-NTA and H2O2 and possesses the potential to be used to treat or prevent degenerative diseases where oxidative stress is implicated.  相似文献   

13.
Hydroxytyrosol (2-(3′,4′-dihydroxyphenyl)ethanol; HT), the most active ortho-diphenolic compound, present either in free or esterified form in extravirgin olive oil, is extensively metabolized in vivo mainly to O-methylated, O-sulfated and glucuronide metabolites. We investigated the capacity of three glucuronide metabolites of HT, 3′-O-β-d-glucuronide and 4′-O-β-d-glucuronide derivatives and 2-(3′,4′-dihydroxyphenyl)ethanol-1-O-β-d-glucuronide, in comparison with the parent compound, to inhibit H2O2 induced oxidative damage and cell death in LLC-PK1 cells, a porcine kidney epithelial cell line. H2O2 treatment exerted a toxic effect inducing cell death, interacting selectively within the pro-death extracellular-signal relate kinase (ERK 1/2) and the pro-survival Akt/PKB signaling pathways. It also produced direct oxidative damage initiating the membrane lipid peroxidation process. None of the tested glucuronides exhibited any protection against the loss in renal cell viability. They also failed to prevent the changes in the phosphorylation states of ERK and Akt, probably reflecting their inability to enter the cells, while HT was highly effective. Notably, pretreatment with glucuronides exerted a protective effect at the highest concentration tested against membrane oxidative damage, comparable to that of HT: the formation of malondialdehyde, fatty acid hydroperoxides and 7-ketocholesterol was significantly inhibited.  相似文献   

14.
This study aimed to investigate whether treatments with vitamin E, L-carnitine and melatonin can protect against CCl4 and diabetes-induced hepatic oxidative stress. Hepatic oxidative stress was performed in rats through 50% v/v carbon tetrachloride (CCl4) (1 ml/kg/3days, i.p.), and through diabetes mellitus induced by streptozotocin (STZ) (40 mg/kg, i.p.). Vitamin E (100 mg/kg/day, i.p), L-carnitine (300 mg/kg/day, i.p.) and melatonin (10 mg/kg/day, i.p.) were injected for a period of 6 weeks. Thereafter, changes in serum glucose level, liver function tests, hepatic malondialdehyde (MDA) content, hepatic reduced glutathione (GSH) content, hepatic superoxide dismutase (SOD) activity, and serum total antioxidant capacity (TAC) level were evaluated. In CCl4-induced liver fibrosis, the efficacy order was melatonin > L-carnitine > vitamin E, while in STZ-induced diabetes, the efficacy order was vitamin E ≥ melatonin > L-carnitine. In conclusion, these data indicate that low dose of melatonin is more effective than high doses of vitamin E and L-carnitine in reducing hepatic oxidative stress induced by CCl4 and diabetes. Moreover, the potent effect of vitamin E in ameliorating diabetes can be linked not only to the antioxidant actions, but also to the superior effect in reducing diabetes-induced hyperglycaemia. Meanwhile, potency of L-carnitine was nearly the same in CCl4 and diabetes-induced liver damage.  相似文献   

15.
BRCA1 and BRCA2 mutation carriers are predisposed to develop breast and ovarian cancers, but the reasons for this tissue specificity are unknown. Breast epithelial cells are known to contain elevated levels of oxidative DNA damage, triggered by hormonally driven growth and its effect on cell metabolism. BRCA1- or BRCA2-deficient cells were found to be more sensitive to oxidative stress, modeled by treatment with patho-physiologic concentrations of hydrogen peroxide. Hydrogen peroxide exposure leads to oxidative DNA damage induced DNA double strand breaks (DSB) in BRCA-deficient cells causing them to accumulate in S-phase. In addition, after hydrogen peroxide treatment, BRCA deficient cells showed impaired Rad51 foci which are dependent on an intact BRCA1–BRCA2 pathway. These DSB resulted in an increase in chromatid-type aberrations, which are characteristic for BRCA1 and BRCA2-deficient cells. The most common result of oxidative DNA damage induced processing of S-phase DSB is an interstitial chromatid deletion, but insertions and exchanges were also seen in BRCA deficient cells. Thus, BRCA1 and BRCA2 are essential for the repair of oxidative DNA damage repair intermediates that persist into S-phase and produce DSB. The implication is that oxidative stress plays a role in the etiology of hereditary breast cancer.  相似文献   

16.
Papillary necrosis was observed in the kidneys of rats, 72 h after receiving a single injection of bromoethylamine (BEA). This effect was associated with renal glutathione (GSH) depletion 1 h after the administration of BEA. Stimulation of renal GSH synthesis by pretreatment of the animals either with glutamine + glycine + cystine or N-acetyl-L-cysteine was attempted. Low doses of these precursors administered previously to BEA, respectively, decreased or abolished the GSH depletion. Nevertheless, both pretreatments failed to modify the magnitude of renal papillary necrosis. High doses of these precursors did not modify the BEA-induced GSH depletion, but they significantly increased GSH levels 24 h after BEA administration. At this time, although a smaller intensity of renal papillary necrosis was observed with the amino acid mixture pretreatment, N-acetyl-L-cysteine pretreated rats showed no papillary necrosis. It is suggested that the observed protective effects against BEA-induced renal papillary injury may be ascribed in some measure, to a mechanism independent of GSH.  相似文献   

17.
Microcystin LR (MC-LR), a liver-specific toxin synthesized by Microcystis aeruginosa, was investigated. MC-LR initiated reactive oxygen species formation followed by damaging DNA and some other cellular components. We investigated the ability of MC-LR to induce oxidative DNA damage by examining the formation of 8-hydroxydeoxyguanosine (8-OH-dG) using HPLC with electrochemical detection. Melatonin, vitamin C (ascorbate), and vitamin E (as Trolox), all of which are free radical scavengers, markedly inhibited the formation of 8-OH-dG in a concentration-dependent manner. The concentration that reduced DNA damage by 50% (IC50) was 0.55, 31.4, and 36.8 μM for melatonin, ascorbate, and Trolox, respectively. The results show that melatonin is 60-and 70-fold more effective than vitamin C or vitamin E, respectively, in reducing oxidative DNA damage. These findings are consistent with the conclusion that melatonin’s highly protective effect against microcystin toxicity relates, at least in part, to its direct hydroxyl radical scavenging ability. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 10, pp. 1377–1382.  相似文献   

18.
In order to gain more knowledge on the antioxidant role of nitroxide radicals, in this study we investigate their possible protective action against DNA damage induced by nitric oxide (NO) and reactive nitrogen oxide species deriving from it, namely nitroxyl anion (NO(-)) and peroxynitrite (ONOO(-)). Rat trachea epithelial cells were exposed under aerobic conditions to (1) NO generated by 150 microM S-nitrosoglutathione monoethyl ester (GSNO-MEE), (2) NO(-) generated by 200 microM Angeli's salt (Na(2)N(2)O(3)) (3) ONOO(-) generated by 1mM SIN-1 (3-morpholino-sydnonimine) and (4) 100 microM synthesized ONOO(-), in the absence and presence of 5 microM of two indolinonic nitroxides synthesized by us and the piperidine nitroxide TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl). DNA damage was assessed using the comet assay-a rapid and sensitive, single-cell gel electrophoresis technique used to detect primary DNA damage in individual cells. The parameter tail moment, used as an index of DNA damage, showed that in all cases the nitroxides remarkably inhibited DNA strand breaks induced by the different nitrogen oxide species. All three nitroxides protect to the same extent, except in the case of synthesized peroxynitrite where the aromatic nitroxides 1 and 2 are more efficient than TEMPO. These findings are consistent with the antioxidant character of nitroxide compounds and give additional information on the potential implications for their use as therapeutic agents.  相似文献   

19.
The variation in tocopherol content of resident peritoneal rat macrophages was investigated during an oxidative stress provided by superoxide anions. Fluorometric measurements showed that phagocytic cells contain 298 +/- 18 ng vit.E/mg prot. The vitamin E level remains nearly constant during 1 h of incubation: 266 +/- 46 ng vit.E/mg prot. HPLC control at 37 degrees C validates our fluorometric measurement. Superoxide anions (O2-.) synthesis was activated by phorbol myristate acetate (PMA) (0.5 microgram/ml), after 1 h of incubation a decrease of 40% of the macrophage tocopherol level was observed and assessed by HLPC control. No tocopherolquinone (TQ) was detected. To clarify this point, tocopherol oxidation was followed spectrophotometrically. Results did not show any appearance of TQ at 265 nm but appearance of a peak at 307 mm. This our results show for the first time that macrophages possess vitamin E which plays a partial role in the protection of their plasma membrane. The lack of detection of TQ is of interest and the study of this unidentified product of oxidation should help us to understand the exact metabolism of vitamin E.  相似文献   

20.
To ascertain whether measurement of possible contributing factors to carcinogenesis concurrently with the transgenic mutation assay is useful to understand the mode of action underlying tumorigenesis of non-genotoxic carcinogens, male and female gpt delta mice were given dicyclanil (DC), a mouse hepatocarcinogen showing all negative results in various genotoxicity tests, at a carcinogenic dose for 13 weeks. Together with gpt and Spi(-) mutations, thiobarbituric acid-reactive substances (TBARS), 8-hydroxydeoxyguanosine (8-OHdG) and bromodeoxyuridine labeling indices (BrdU-LIs) in the livers were examined. Whereas there were no changes in TBARS levels among the groups, significant increases in 8-OHdG levels and centrilobular hepatocyte hypertrophy were observed in the treated mice of both genders. In contrast, BrdU-LIs and liver weights for the treated females, but not the males were significantly higher than those for the controls. Likewise, the gpt mutant frequencies (MFs) in the treated females were significantly elevated, GC:TA transversion mutations being predominant. No significant alterations were found in the gpt MFs of the males and the Spi(-) MFs of both sexes. The results for the transgenic mutation assays were consistent with DC carcinogenicity in terms of the sex specificity for females. Considering that 8-OHdG induces GC:TA transversion mutations by mispairing with A bases, it is likely that cells with high proliferation rates and a large amounts of 8-OHdG come to harbor mutations at high incidence. This is the first report demonstrating DC-induced genotoxicity, the results implying that examination of carcinogenic parameters concomitantly with reporter gene mutation assays is able to provide crucial information to comprehend the underlying mechanisms of so-called non-genotoxic carcinogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号