首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Carotenoid composition is very diverse in Rhodophyta. In this study, we investigated whether this variation is related to the phylogeny of this group. Rhodophyta consists of seven classes, and they can be divided into two groups on the basis of their morphology. The unicellular group (Cyanidiophyceae, Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae) contained only β‐carotene and zeaxanthin, “ZEA‐type carotenoids.” In contrast, within the macrophytic group (Bangiophyceae, Compsopogonophyceae, and Florideophyceae), Compsopogonophyceae contained antheraxanthin in addition to ZEA‐type carotenoids, “ANT‐type carotenoids,” whereas Bangiophyceae contained α‐carotene and lutein along with ZEA‐type carotenoids, “LUT‐type carotenoids.” Florideophyceae is divided into five subclasses. Ahnfeltiophycidae, Hildenbrandiophycidae, and Nemaliophycidae contained LUT‐type carotenoids. In Corallinophycidae, Hapalidiales and Lithophylloideae in Corallinales contained LUT‐type carotenoids, whereas Corallinoideae in Corallinales contained ANT‐type carotenoids. In Rhodymeniophycidae, most orders contained LUT‐type carotenoids; however, only Gracilariales contained ANT‐type carotenoids. There is a clear relationship between carotenoid composition and phylogenetics in Rhodophyta. Furthermore, we searched open genome databases of several red algae for references to the synthetic enzymes of the carotenoid types detected in this study. β‐Carotene and zeaxanthin might be synthesized from lycopene, as in land plants. Antheraxanthin might require zeaxanthin epoxydase, whereas α‐carotene and lutein might require two additional enzymes, as in land plants. Furthermore, Glaucophyta contained ZEA‐type carotenoids, and Cryptophyta contained β‐carotene, α‐carotene, and alloxanthin, whose acetylenic group might be synthesized from zeaxanthin by an unknown enzyme. Therefore, we conclude that the presence or absence of the four enzymes is related to diversification of carotenoid composition in these three phyla.  相似文献   

3.
In presence of oleate and taurocholate, differentiated CaCo-2 cell monolayers on membranes were able to assemble and secrete chylomicrons. Under these conditions, both cellular uptake and secretion into chylomicrons of beta-carotene (beta-C) were curvilinear, time-dependent (2-16 h), saturable, and concentration-dependent (apparent K(m) of 7-10 microM) processes. Under linear concentration conditions at 16 h incubation, the extent of absorption of all-trans beta-C was 11% (80% in chylomicrons), while those of 9-cis- and 13-cis-beta-C were significantly lower (2-3%). The preferential uptake of the all-trans isomer was also shown in hepatic stellate HSC-T6 cells and in a cell-free system from rat liver (microsomes), but not in endothelial EAHY cells or U937 monocyte-macrophages. Moreover, extents of absorption of alpha-carotene (alpha-C), lutein (LUT), and lycopene (LYC) in CaCo-2 cells were 10%, 7%, and 2.5%, respectively. Marked carotenoid interactions were observed between LYC/beta-C and beta-C/alpha-C. The present results indicate that beta-C conformation plays a major role in its intestinal absorption and that cis isomer discrimination is at the levels of cellular uptake and incorporation into chylomicrons. Moreover, the kinetics of cellular uptake and secretion of beta-C, the inhibition of the intestinal absorption of one carotenoid by another, and the cellular specificity of isomer discrimination all suggest that carotenoid uptake by intestinal cells is a facilitated process.  相似文献   

4.
This study aims to explore the effects of exosomes, secreted by retinal pigment epithelial (RPE) cells under oxidative stress (OS), on apoptosis and inflammation of normal RPE cells. Exosomes secreted by normal RPE cells (named as exo) and rotenone (2.5 µmol/L) stimulated RPE cells (named as rot-exo) were isolated and extracted by multi-step differential centrifugation for morphology observation under a transmission electron microscopy. pcDNA3.1a, pcDNA3.1a-Apaf1, and p3xFlag-CMV-caspase-9 plasmids were constructed and transfected into ARPE-19 cells. Exosomes secreted by ARPE-19 cells were injected into the vitreous body of rats to verify the effect of Apaf1 and caspase-9 on cell apoptosis and inflammation. Co-immunoprecipitation was applied to clarify the interaction of Apaf1 with caspase-9. Exosomes secreted by rotenone stimulated ARPE-19 cells could induce cell apoptosis, oxidative injury, and inflammation in ARPE-19 cells. Exosomes secreted under OS can damage retinal functions of rats and have upregulated expression of Apaf1. Overexpression of Apaf1 in exosomes secreted under OS can cause the inhibition of cell proliferation, the increase of cell apoptosis and elicitation of inflammatory response in ARPE-19 cells. Exosomes derived from ARPE-19 cells under OS regulate Apaf1 expression to increase cell apoptosis and to induce oxidative injury and inflammatory response through a caspase-9 apoptotic pathway.  相似文献   

5.
ARPE-19, a human retinal pigment epithelial (RPE) cell line, has been widely used in studies of RPE function as well as gene expression. Here, we report the novel finding that N-(4-hydroxyphenyl)retinamide (fenretinide), a synthetic retinoic acid derivative and a potential chemopreventive agent against cancer, induced the differentiation of ARPE-19 cells into a neuronal phenotype. The treated cells lost their epithelial phenotype and exhibited a typical neuronal shape with long processes (four to five times longer than the cell body). The onset of fenretinide-induced neuronal differentiation was dose and time dependent, started within 1-2 days, and lasted at least 4 weeks. Immunohistochemical studies indicated that the expression of neurofilament proteins (NF160 and NF200), calretinin and neural cell adhesion molecule was increased in these differentiated cells. Western blot analysis indicated that cellular retinaldehyde-binding protein, which is normally expressed in RPE cells, was decreased in treated cells. Protein analysis on a two-dimensional gel followed by matrix-assisted laser desorption ionization-time of flight mass spectrometric analysis demonstrated that heat-shock protein 70 was increased after fenretinide treatment. Thus, fenretinide, a synthetic retinoid, is able to induce neuronal differentiation of human RPE cells in culture.  相似文献   

6.
Complement factor H (CFH) is one of the most important soluble complement regulatory proteins and is closely associated with age-related macular degeneration (AMD), the leading cause of irreversible central vision loss in the elderly population in developed countries. Our study searches to investigate whether CFH expression is changed in oxidative damaged retinal pigment epithelium (RPE) cells and the role of CFH in the in vitro neovascularization. First, it was confirmed by immunofluorescence staining that CFH was expressed by ARPE-19 cells. CFH mRNA and protein in oxidative (H2O2) damaged ARPE-19 cells were both reduced, as determined by Real-time PCR and Western blotting analysis. Enzyme-linked immunosorbent assay (ELISA) also showed that ARPE-19 cells treated with H2O2 caused an increase in C3a content, which indicates complement activation. Then, wound assays were performed to show that CFH expression suppression promoted human umbilical vein endothelial cell (HUVECs) migration. Thereafter, ARPE-19 cells were transfected with CFH-specific siRNA and CFH knockdown was confirmed with the aid of Real-time PCR, immunofluorescence staining and Western blotting. The ELISA results showed that specific CFH knockdown in ARPE-19 cells activated the complement system. Finally, in vitro matrigel tube formation assay was performed to determine whether change of CFH expression in RPE would affect tube formation by HUVECs. More tubes were formed by HUVECs co-cultured with ARPE-19 cells transfected with CFH specific-siRNA when compared with controls. Our results suggested that RPE cells might be the local CFH source, and RPE cell injuries (such as oxidative stress) may cause CFH expression suppression, which in turn may lead to complement activation and promotion of tube formation by HUVECs. This finding is of importance in elucidating the role of complement in the pathogenesis of ocular neovascularization including choroidal neovascularization.  相似文献   

7.
Retinal pigment epithelial (RPE) cells secrete vascular endothelial growth factor (VEGF), a cytokine known to promote angiogenesis. Results from RNase protection assays (RPAs) show that RPE from non-diabetic human donors and from adult retinal pigment epithelium-19 (ARPE-19) cells expressed significant bone morphogenetic protein-4 (BMP-4) message. In addition, ARPE-19 cells cultured in high glucose (25 mM), compared to those in physiological glucose (5.5 mM) released significantly more BMP-4 into the conditioned media (CM). However, the effect of BMP-4 on the release of VEGF by ARPE-19 cells has not been studied. Accordingly, ARPE-19 cells were treated with BMP-4 to determine VEGF secretion. BMP-4 and VEGF levels in the CM and cell lysates were measured by enzyme-linked immunosorbent assay (ELISA). Cells treated with exogenous BMP-4 had higher VEGF in the CM and this treatment effect was dose- and time-dependent, while cell lysates had low levels of VEGF. Addition of cycloheximide (CHX) or actinomycin-D (ACT) significantly reduced VEGF secretion from cells treated with BMP-4, suggesting that the BMP-4-induced secretion of VEGF requires new RNA and protein synthesis. Our results suggest that BMP-4 may play a role in the regulation of ocular angiogenesis associated with diabetic retinopathy (DR) by stimulating VEGF release from RPE cells.  相似文献   

8.
Exosomes are informative microvesicles associated with intercellular communication via the transfer of many molecular constituents such as proteins, lipids, and nucleic acids; environmental changes and the cellular status around cells greatly affect exosome components. Cells of the retinal pigment epithelium (RPE) are key players in retinal homeostasis. Transforming growth factor (TGF)-β and tumour necrosis factor (TNF)-α are increased in the vitreous and retina in several retinal diseases and activate and undergo epithelial-mesenchymal transition (EMT) in RPE cells. EMT is closely associated with mechanisms of wound healing, including fibrosis and related angiogenesis; however, whether exosome components depend on the cell status, epithelium or mesenchyme and whether these exosomes have pro- or anti-angiogenic roles in the retina are unknown. We performed this study to investigate whether these EMT inducers affect the kinds of components in exosomes secreted from RPE cells and to assess their angiogenic effects. Exosomes were collected from culture media supernatants of a human RPE cell line (ARPE-19) stimulated with or without 10 ng/ml TNF-α and/or 5 ng/ml TGF-β2. NanoSight tracking analysis and immunoblot analysis using exosome markers were used to qualify harvested vesicles. Angiogenic factor microarray analysis revealed that exosomes derived from ARPE-19 cells cultured with TNF-α alone (Exo-TNF) and co-stimulated with TNF-α and TGF-β2 (Exo-CO) contained more angiogenic factors than exosomes derived from control cells (Exo-CTL) or ARPE-19 cells cultured with TGF-β2 alone (Exo-TGF). To assess the effect on angiogenesis, we performed chemotaxis, tube formation, and proliferation assays of human umbilical vein endothelial cells (HUVECs) stimulated with or without exosomes. HUVECs migrated to RPE-derived exosomes, and exosomes derived from ARPE-19 cells accelerated HUVEC tube formation. In contrast, Exo-TNF and Exo-CO reduced HUVEC proliferation. Our findings provide insight into the mechanisms underlying the relation between angiogenesis and exosomes derived from RPE cells.  相似文献   

9.
The accumulation of lipofuscin by retinal pigment epithelium may be an important feature in the pathogenesis of age-related macular degeneration, suggesting the possibility that this common cause of blindness might be prevented or delayed by antioxidants. In support of this idea, we now report significantly reduced formation of lipofuscin when the antioxidant substances lutein, zeaxanthin, lycopene (carotenoids), or alpha-tocopherol were added to rabbit and bovine (calf) retinal pigment epithelial (RPE) cells exposed to normobaric hyperoxia (40%) and photoreceptor outer segments. Rabbit and calf RPE cells were grown for 2 weeks with addition of one of the test substances every 48 h. The cellular uptake of carotenoids and alpha-tocopherol was assayed by HPLC after 2 weeks. The lipofuscin-content was measured by static fluorometry (rabbit cells) or by image analysis (calf cells). Both rabbit and calf RPE showed similar results with significantly lower amounts of lipofuscin in antioxidant-treated cells. The effect of carotenoids is especially interesting, since the result is not dependent on their protective effect against photo-oxidative reactions. The chain-breaking abilities of these antioxidants in peroxidative reactions of lipid membranes and quenching of free radicals seem to be of importance for inhibition of lipofuscin formation.  相似文献   

10.
BACKGROUND: The techniques to isolate and purify retinal pigment epithelial (RPE) cells from small piece of autologous tissues are extremely difficult, and it is important to develop an efficient cell culture technique for RPE cells. The purpose of this study was to investigate the effect of 3T3-J2 cells and conditioned medium from 3T3-J2 cells on the proliferation of cultured RPE cells. METHODS: RPE cells from pigmented rabbits and a human RPE-derived cell line, ARPE-19, were used. First, the effects of co-culturing RPE cells with 3T3-J2 cells on the growth of the cells were analyzed. Second, the effects of the conditioned medium from 3T3-J2 cells on the proliferation of both types of cells were investigated. And third, the effects of the conditioned medium on RPE cell culture from a surgically removed choroidal neovascular (CNV) membrane were investigated. RESULTS: The 3T3-J2 cells increased the proliferation of both rabbit RPE cells and ARPE-19 cells. The number of rabbit RPE cells cultured in a mixture of the conditioned medium from 3T3-J2 cells was significantly higher than that in the reported optimal condition, and a similar tendency was observed for ARPE-19 cells. The results from enzyme-linked immunosorbent assay showed the presence of PDGF-AB, VEGF and IGF-I in the conditioned medium. The conditioned medium also promoted selective growth of human RPE cells from CNV. DISCUSSION: The results from this study present the conditions for efficient and selective culture of primary RPE cells.  相似文献   

11.
12.
Functional research of retinal pigment epithelium (RPE) most often relies on utilization of RPE-derived cell lines in vitro. However, no studies about similarities and differences of the respective cell lines exist so far. Thus, we here analyze the proteome of the most popular RPE cell lines: ARPE-19 and hTERT and compare their constitutive and de novo synthesized protein expression profiles to human early passage retinal pigment epithelial cells (epRPE) by 2-D electrophoresis and MALDI-TOF peptide mass fingerprinting. In all three cell lines the baseline protein expression pattern corresponded well to the de novo synthesized cellular proteome. However, comparison of the protein profile of epRPE cells with that of hTERT-RPE cells revealed a higher abundance of proteins related to cell migration, adhesion, and extracellular matrix formation, paralleled by a down-regulation of proteins attributed to cell polarization, and showed an altered expression of detoxification enzymes in hTERT-RPE. ARPE-19 cells, however, exhibited a higher abundance of components of the microtubule cytoskeleton and differences in expression of proteins related to proliferation and cell death. epRPE cells, hTERT-RPE, and ARPE-19 therefore may respond differently with respect to certain functional properties, a finding that should prove valuable for future in vitro studies.  相似文献   

13.
14.
15.
In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.  相似文献   

16.
Vascular endothelial growth factor (VEGF) secreted by the retinal pigment epithelium (RPE) plays an important role in ocular homeostasis, but also in diseases, most notably age-related macular degeneration (AMD). To date, anti-VEGF drugs like ranibizumab have been shown to be most effective in treating these pathologic conditions. However, clinical trials suggest that the RPE could degenerate and perish through anti-VEGF treatment. Herein, we evaluated possible pathways and outcomes of the interaction between ranibizumab and human RPE cells (ARPE-19). Results indicate that ranibizumab affects the VEGF-A metabolism in RPE cells from an extra- as well as intracellular site. The drug is taken up into the cells, with the VEGF receptor 2 (VEGFR-2) being involved, and decreases VEGF-A protein levels within the cells as well as extracellularly. Oxidative stress plays a key role in various inflammatory disorders of the eye. Our results suggest that oxidative stress inhibits RPE cell proliferation. This anti-proliferative effect on RPE cells is significantly enhanced through ranibizumab, which does not inhibit RPE cell proliferation substantially in absence of relevant oxidative stress. Therefore, we emphasize that anti-VEGF treatment should be selected carefully in AMD patients with preexistent extensive RPE atrophy.  相似文献   

17.
18.

Background

Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice.

Principal Findings

MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo.

Conclusion

We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might promote drusen accumulation and progression to CNV in smoker patients with dry AMD.  相似文献   

19.
20.
The risk of chronic oxidative stress in the retinal pigment epithelium (RPE) increases with age due to accumulation of the photoreactive age pigment lipofuscin (LFG). Here, we asked whether sublethal and weakly lethal photic stress, induced by irradiation of ARPE-19 cells containing phagocytised LFG, affected the cell specific phagocytic activity, which is critically important for proper functioning and survival of the retina, and if natural antioxidants could modify the observed outcomes. ARPE-19 cells preloaded with LFG isolated from human donors of different age or containing LFG enriched with zeaxanthin and α-tocopherol (LFG-A), were irradiated with blue light. Phagocytosis of fluorescein-5-isothiocyanate (FITC)-labelled photoreceptor outer segments was determined by flow cytometry. Photoreactivity of LFG and LFG-A was analysed by measuring photoconsumption of oxygen and photogeneration of singlet oxygen mediated by the granules. LFG-mediated photic stress in ARPE-19 cells induced significant inhibition of their specific phagocytosis. The inhibitory effect increased with age of LFG donors and was reduced by enrichment of the granules with antioxidants. Oxygen consumption and generation of singlet oxygen induced by the photoexcited LFG increased with donor’s age and was partially quenched by antioxidants. Although the phototoxic potential of lipofuscin increased with age, natural antioxidants reduced photoreactivity of LFG and their efficiency to induce oxidative stress. This study has demonstrated, for the first time, that mild oxidative stress, mediated by the age pigment lipofuscin, impairs specific phagocytic activity of RPE, and that natural antioxidants can protect this important cellular function by reducing lipofuscin photoreactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号