首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Vancouver Island, British Columbia, fertilization with nitrogen (N) and phosphorus (P) following clearcutting increases growth of western hemlock. To explore whether fertilization also resulted in ectomycorrhizal fungal communities that were more or less similar to neighboring unlogged stands, we sampled roots from western hemlock from three replicate plots from each of five different, well-characterized, forest stand types that differed in site type, and in logging and fertilization history. We harvested four samples of 100 ectomycorrhizal root tips from each plot, a total of 60 samples per stand type. From each sample, we analyzed fungal ribosomal internal transcribed spacers and 28S DNA, sequencing 15–29 clones per sample and 60–116 clones per plot. We detected 147 fungal operational taxonomic units among a total of 1435 sequences. Craterellus tubaeformis was frequently present and resulted in a pattern of phylogenetic overdispersion in the fungal communities. Fungal species composition was strongly correlated with foliar nitrogen concentration. However, other site quality factors were also important because the fertilized regenerating hemlock and mature hemlock-amabilis fir forests had similar foliar nitrogen content but little overlap in fungal species. Compared with unfertilized regenerating forests, fungal communities in N?+?P-fertilized regenerating forests had significantly more species overlap with old growth forests. However, the fungal communities of all regenerating forest were similar to one another and all differed significantly from older forests. By correlating fungal clades with habitats, this research improves understanding of how forest management can contribute to maintaining diverse ectomycorrhizal fungal communities across a landscape.  相似文献   

2.
The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind‐exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge‐to‐snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag‐encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.  相似文献   

3.
Baxter JW  Dighton J 《Mycorrhiza》2005,15(7):513-523
We examined the influence of phosphorus source and availability on host plant (Pinus rigida) response to ectomycorrhizal diversity under contrasting P conditions. An ectomycorrhizal richness gradient was established with equimolar P supplied as either inorganic phosphate or organic inositol hexaphosphate. We measured growth and N and P uptake of individual P. rigida seedlings inoculated with one, two, or four species of ectomycorrhizal fungi simultaneously and without mycorrhizas in axenic culture. Whereas colonization of P. rigida by individual species of ectomycorrhizal fungi decreased with increasing fungal richness, colonization of all species combined increased. Plant biomass and N content increased across the ectomycorrhizal richness gradient in the organic but not the inorganic P treatment. Plants grown under organic P conditions had higher N concentration than those grown under inorganic P conditions, but there was no effect of richness. Phosphorus content of plants grown in the organic P treatment increased with increasing ectomycorrhizal richness, but there was no response in the inorganic P treatment. Phosphorus concentration was higher in plants grown at the four-species richness level in the organic P treatment, but there was no effect of diversity under inorganic P conditions. Overall, few ectomycorrhizal composition effects were found on plant growth or nutrient status. Phosphatase activities of individual ectomycorrhizal fungi differed under organic P conditions, but there was no difference in total root system phosphatase expression between the inorganic or organic P treatments or across richness levels. Our results provide evidence that plant response to ectomycorrhizal diversity is dependent on the source and availability of P.  相似文献   

4.
Microbial communities play a major role in terrestrial ecosystem functioning, but the determinates of their diversity and functional interactions are not well known. In this study, we explored leaf litter fungal diversity in a diverse Panama lowland tropical forest in which a replicated factorial N, P, K and micronutrient fertilization experiment of 40 × 40 m plots had been ongoing for nine years. We extracted DNA from leaf litter samples and used fungal‐specific amplification and a 454 pyrosequencing approach to sequence two loci, the nuclear ribosomal internal transcribed spacer (ITS) region and the nuclear ribosomal large subunit (LSU) D1 region. Using a 95% sequence similarity threshold for ITS1 spacer recovered a total of 2523 OTUs, and the number of unique ITS1 OTUs per 0.5–1.0 g leaf litter sample ranged from 55 to 177. Ascomycota were the dominant phylum among the leaf litter fungi (71% of the OTUs), followed by Basidiomycota (26% of the OTUs). In contrast to our expectations based on temperate ecosystems, long‐term addition of nutrients increased, rather than decreased, species richness relative to controls. Effect of individual nutrients was more subtle and seen primarily as changes in community compositions especially at lower taxonomic levels, rather than as significant changes in species richness. For example, plots receiving P tended to show a greater similarity in community composition compared to the other nutrient treatments, the +PK, +NK and +NPK plots appeared to be more dominated by the Nectriaceae than other treatments, and indicator species for particular nutrient combinations were identified.  相似文献   

5.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

6.
It is commonly assumed that nitrogen (N) is the primary mineral resource limiting the productivity of temperate forests. Sustained inputs of N via atmospheric deposition are altering the N status of temperate forests raising the possibility that nutrients such as phosphorus (P) are increasingly limiting productivity. The objective of this study was to determine whether P availability limits tree growth alone or in combination with N. This study was conducted in two forest types common throughout the New England landscape of the northeastern United States; in sugar maple and white ash dominated stands growing on base rich parent material characterized by rapid rates of N cycling and high N availability, and in red oak–beech–hemlock dominated stands growing on base-poor parent material characterized by slow rates of N cycling and low N availability. Starting in 2004, N and P were added to replicate plots in each forest type in factorial combination at a rate of 150 and 50 kg ha−1 year−1, respectively. Diameter growth rates of all trees >10 cm DBH were measured in 2005 and 2006 using dendrometer bands and converted into units of basal area increment (BAI) and wood production. Following 2 years of fertilization, basal area increment in the sugar maple–white ash forests remained strongly N limited. Fertilization with P did not significantly increase BAI alone, although both N and P fertilization tended (P < 0.10) to increase diameter growth in white ash. Wood production in the N-fertilized plots increased by 100 g C m−2 year−1, roughly doubling production in the non-fertilized plots. In the red oak–beech–hemlock stands, there was no overall effect of N or P fertilization on BAI or wood production because BAI in some species was stimulated by fertilization with N alone (e.g., black cherry, red oak), while in other species BAI was unaffected (e.g., red maple, beech) or negatively affected by fertilization with N or P (e.g., eastern hemlock). Given that BAI in several tree species responded to fertilization with N alone and that only one species responded to P fertilization once N was added, this study suggests that decades of atmospheric N deposition have not (yet) resulted in widespread P limitation or saturation of tree demand for N.  相似文献   

7.
Arbuscular mycorrhizal fungal (AMF) spore communities were surveyed in a long-term field fertilization experiment in Switzerland, where different amounts of phosphorus (P) were applied to soil. Plots receiving no P as well as plots systematically fertilized in excess to plant needs for 31 years were used to test the hypothesis that application of P fertilizer changes the composition and diversity of AMF communities. AMF spores were isolated from the field soil, identified, and counted so as to quantify the effect of P fertilization on AMF spore density, composition, and diversity. Trap cultures were established from field soil with four host plants (sunflower, leek, maize, and Crotalaria grahamiana), and the spore communities were then analyzed in substrate samples from the pots. Altogether, nine AMF species were detected in the soil. No evidence has been acquired for effect of P fertilization on spore density, composition, and diversity of AMF in both the field soil and in trap cultures. On the other hand, we observed strong effect of crop plant species on spore densities in the soil, the values being lowest under rapeseed and highest under Phacelia tanacetifolia covercrop. The identity of plant species in trap pots also significantly affected composition and diversity of associated AMF communities, probably due to preferential establishment of symbiosis between certain plant and AMF species. AMF spore communities under mycorrhizal host plants (wheat and Phacelia in the fields and four host plant species in trap pots) were dominated by a single AMF species, Glomus intraradices. This resulted in exceptionally low AMF spore diversity that seems to be linked to high clay content of the soil.Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

8.
As anthropogenic N deposition has been suspected to be the main reason for the decline of macromycetous sporocarp production in forest ecosystems, various N-fertilization experiments were started in the mid 1990s. The dynamics of ectomycorrhizal (root-inhabiting) and terricolous saprobic (litter-inhabiting) fungal communities were studied by exhaustive sporocarp inventories in a substitution Norway spruce (Picea abies) forest in two 256-m2 plots sampled for periods of 1 week at 1-m2 resolution between 1994 and 2007. N was added to the soil twice per year in one plot from the fourth year onwards. The effects of N input and time on aboveground fungal communities were assessed using redundancy analysis, principal response curves and non-parametric multivariate ANOVA. Results of this long-term experiment revealed that both ectomycorrhizal and saprobic fungal communities responded to an increase in soil N input. The ectomycorrhizal community reacted by a fast decrease in sporocarp production and in species richness, whereas the saprobic community was less affected. The response was highly species specific, especially for the saprobic community. The difference in species composition between control and fertilized plots was significant after 1 year of N addition for ectomycorrhizal fungi and only after 3 years for saprobic fungi. An aging effect affected sporocarp production in the whole area. For both communities, this unidirectional drift in species composition was as important as the treatment effect. This result highlights the importance of considering the respective role of treatment and year effects in long-term field experiments on fungal communities.  相似文献   

9.
Exploring the link between above‐ and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well‐recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field‐based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant‐associated effects on soil fungal communities are largely guild‐specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.  相似文献   

10.
Human activity has more than doubled the amount of nitrogen entering the global nitrogen cycle, and the boreal forest biome is a nitrogen‐limited ecosystem sensitive to nitrogen load perturbation. Although bryophyte‐associated microbes contribute significantly to boreal forest ecosystem function, particularly in carbon and nitrogen cycling, little is known about their responses to anthropogenic global change. Amplicon pyrosequencing of the ITS2 region of rDNA was used to investigate how fungal communities associated with three bryophyte species responded to increased nitrogen loads in a long‐term fertilization experiment in a boreal Picea abies forest in southern Norway. Overall, OTU richness, community composition and the relative abundance of specific ecological guilds were primarily influenced by host species identity and tissue type. Although not the primary factor affecting fungal communities, nitrogen addition did impact the abundance of specific guilds of fungi and the resulting overall community composition. Increased nitrogen loads decreased ectomycorrhizal abundance, with Amphinema, Cortinarius, Russula and Tylospora OTUs responding negatively to fertilization. Pathogen abundance increased with fertilization, particularly in the moss pathogen Eocronartium. Saprophytic fungi were both positively and negatively impacted by the nitrogen addition, indicating a complex community level response. The overshadowing of the effects of increased nitrogen loads by variation related to host and tissue type highlights the complexity of bryophyte‐associated microbial communities and the intricate nature of their responses to anthropogenic global change.  相似文献   

11.
Northern hardwood forests in the eastern US exhibit species-specific influences on nitrogen (N) cycling, suggesting that their phosphorus (P) cycling characteristics may also vary by species. These characteristics are increasingly important to understand in light of evidence suggesting that atmospheric N deposition has increased N availability in the region, potentially leading to phosphorus limitation. We examined how P characteristics differ among tree species and whether these characteristics respond to simulated N deposition (fertilization). We added NH4NO3 fertilizer (50 kg ha?1 year?1) to single-species plots of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.), eastern hemlock (Tsuga canadensis (L.) Carr.), American beech (Fagus grandifolia Ehrh.), and yellow birch (Betula alleghaniensis Britt.), in the Catskill Mountains, New York from 1997 to 2007. Species differences were observed in foliar, litter and root P concentrations, but all were unaffected by a cumulative N fertilization of 550 kg/ha. Similarly, measures of soil P availability and biotic P sufficiency differed by species but were unaffected by N fertilization. Results suggest species exhibit unique relationships to P as well as N cycles. We found little evidence that N fertilization leads to increased P limitation in these northern hardwood forests. However, species such as sugar maple and red oak may be sufficient in P, whereas beech and hemlock may be less sufficient and therefore potentially more sensitive to future N-stimulated P limitation.  相似文献   

12.
The fungal loop model of semiarid ecosystems integrates microtopographic structures and pulse dynamics with key microbial processes. However limited data exist about the composition and structure of fungal communities in these ecosystems. The goal of this study was to characterize diversity and structure of soil fungal communities in a semiarid grassland. The effect of long-term nitrogen fertilization on fungi also was evaluated. Samples of rhizosphere (soil surrounding plant roots) and biological soil crust (BSC) were collected in central New Mexico, USA. DNA was amplified from the samples with fungal specific primers. Twelve clone libraries were generated with a total of 307 (78 operational taxonomic units, OTUs) and 324 sequences (67 OTUs) for BSC and rhizosphere respectively. Approximately 40% of soil OTUs were considered novel (less than 97% identity when compared to other sequences in NCBI using BLAST). The dominant organisms were dark-septate (melanized fungi) ascomycetes belonging to Pleosporales. Effects of N enrichment on fungi were not evident at the community level; however the abundance of unique sequences, sampling intensity and temporal variations may be uncovering the effect of N in composition and diversity of fungal communities. The fungal communities of rhizosphere soil and BSC overlapped substantially in composition, with a Jaccard abundance similarity index of 0.75. Further analyses are required to explore possible functions of the dominant species colonizing zones of semiarid grassland soils.  相似文献   

13.
The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and ‘hotspots’ of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation ‘hotspots’ in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.  相似文献   

14.
Abstract. Question: What is the long‐term influence of nutrient availability, productivity and soil pH on grassland community organization? Location: Ukulinga research farm, KwaZulu‐Natal, South Africa. Methods: The influence of fertilization on soil pH, nitrogen (N) and phosphorus (P) on variation in plant traits, community composition and species richness were examined in a 50‐year grassland fertilization experiment. Results: Averaged over 30 years, above‐ground net primary production (ANPP) was 337, 428 and 518 g.m‐2 in sites not fertilized, fertilized with N, and fertilized with N plus P respectively. ANPP depended directly on N‐fertilization but not on P‐fertilization or liming, and responded positively to the interaction of N (first limiting nutrient) and P (second limiting nutrient). Short narrow‐leaved grass species —Themeda triandra, Tristachya leucothrix and Setaria nigrirostris— dominated sites of lowest ANPP where N was limiting (unfertilized, P‐fertilized or limed sites). A tall narrow‐leaved species, Eragrostis curvula, dominated sites of intermediate ANPP where P was limiting (N‐fertilized sites). By contrast, a tall broad‐leaved species, Panicum maximum, dominated the most productive sites where neither N nor P were limiting (N‐ and P‐fertilized sites). Certain species responded to liming and type of N‐fertilizer apparently because of their effects on soil pH. N‐fertilization reduced the density of herbaceous dicots (forbs) from 14 (unfertilized) to two (high N, no P, no lime) and five species per m2 (high N, no P, limed). This effect was attributed to increased ANPP and a decrease in soil pH from 4.6 (KCl) in unfertilized sites to 3.49 (high N, no lime) and 4.65 (high N and lime). Soil acidification had no effect on grass species richness but influenced the abundance of certain species. Conclusions: Grassland community organization is determined not only by the influence of N availability, but also by the hierarchical interaction of N and P availability, in part through their compounded effect on ANPP, and by individualistic species responses to soil pH.  相似文献   

15.
Summary A re-examination of earlier NPK fertilization experiments in Douglas fir stands on sandy soils shows the effects of high nitrogen input by air pollution during the last 10–15 years on plant nutrition at these sites. In 1960, experimental plots showed a positive growth reaction to nitrogen, phosphorus, and potassium fertilization. All suffered from severe phosphorus deficiency in 1984, low phosphorus in the needles was invariably accompanied by a high nitrogen content, with all N/P ratios between 20 and 30. The same conclusion emerges from an independent investigation of nutrient status of a selection of Douglas fir stands. Hence, if stand productivity and a balanced nutrient status of the trees is to be maintained, the increase in atmospheric input of nitrogen calls for supplementary fertilization. Given the current N/P ratios in the needles, a positive growth response to phosphorus fertilization is to be expected.  相似文献   

16.
Root morphology is important in understanding root functions in forest ecosystems. However, the effects of ectomycorrhizal colonization and soil nutrient availability on root morphology is not clear. In this study, root morphology in relation to season, soil depth, soil nitrogen (N) availability, and mycorrhizal fungal colonization were investigated in a larch (Larix gmelinii) plantation in northeastern China. The first-order roots (or root tips) of larch were sampled four times in May, July, and September of 2005, and May of 2006 from two depths of upper soil layer (0–10 and 10–20 cm) in the control and the N-fertilized plots. The results showed that ectomycorrhizal (ECM) colonization rates for the first-order roots were reduced by 17% under N fertilization. The peak of root colonization rates occurred in summer and was positively correlated with soil temperature. ECM colonization significantly altered root morphology: root diameter was increased by 19 and 29%, root length shortened by 27 and 25%, and specific root length (SRL) reduced by 16 and 19% for the control and the N-fertilized plots, respectively. N fertilization led to decreased root length, but did not affect root diameter and SRL. In addition, effects of ECM colonization on root morphology varied with season and soil depth. The observed relationships among ECM fungal colonization, soil N availability, and root-tip morphology should improve our understanding of how root tips respond to environmental changes in soil in temperate forest ecosystems.  相似文献   

17.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   

18.
? We tested the prediction that the abundance and diversity of arbuscular mycorrhizal (AM) fungi are influenced by resource availability and plant community composition by examining the joint effects of carbon dioxide (CO(2) ) enrichment, nitrogen (N) fertilization and plant diversity on AM fungi. ? We quantified AM fungal spores and extramatrical hyphae in 176 plots after 7 yr of treatment with all combinations of ambient or elevated CO(2) (368 or 560 ppm), with or without N fertilization (0 or 4 g Nm(-2) ), and one (monoculture) or 16 host plant species (polyculture) in the BioCON field experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. ? Extramatrical hyphal lengths were increased by CO(2) enrichment, whereas AM spore abundance decreased with N fertilization. Spore abundance, morphotype richness and extramatrical hyphal lengths were all greater in monoculture plots. A structural equation model showed AM fungal biovolume was most influenced by CO(2) enrichment, plant community composition and plant richness, whereas spore richness was most influenced by fungal biovolume, plant community composition and plant richness. ? Arbuscular mycorrhizal fungi responded to differences in host community and resource availability, suggesting that mycorrhizal functions, such as carbon sequestration and soil stability, will be affected by global change.  相似文献   

19.
The Brazilian Cerrado is a diversity hotspot due to its high level of endemism and rapid loss of habitats. It is estimated that the number of herbaceous species is four times higher than that of woody species. Increasing levels of nitrogen additions to natural ecosystems have been indicated as a determinant of biodiversity loss. We investigated the effects of nutrient additions on the productivity (aboveground and belowground) and on diversity of the herbaceous-subshrub layer of a Brazilian savanna (cerrado stricto sensu). The experiment was carried out in the IBGE Ecological Reserve, near Brasília, Brazil. Between 1998 and 2006, N, P, N plus P, or Ca were applied to sixteen 225 m2 plots, arranged in a completely randomized design. Aboveground biomass was compared 1 year after the first fertilization and 10 years later. Floristic diversity was significantly different (P < 0.01) between the treatments. The highest and lowest species richness were presented in control and NP, respectively. The addition of P alone or in combination with N induced invasion by Melinis minutiflora (exotic C4 grass). The aboveground biomass of this species was higher in NP and P plots. In the N treatment, Echinolaena inflexa (native C3 grass) presented elevated cover and biomass but M. minutiflora was absent. The invasion by alien species resulted in negative impacts on native grass species. Besides changes in aboveground biomass, addition of N and P also led, although to a lesser extent, to changes in the root morphology and biomass, but these responses were modulated by seasonal variation in soil moisture. The results suggest that environmental changes in nutrient availability can lead to important consequences for diversity and functioning of this savanna where the numerous rare species have more chance to persist under dystrophic conditions as some species that tend to be dominant would be less competitive.  相似文献   

20.
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co‐limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454‐pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号