首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R G Reed  F W Putnam    T Peters  Jr 《The Biochemical journal》1980,191(3):867-868
A large tryptic peptide of bovine serum albumin (residues 377--582) was subjected to 32 cycles of Edman degradation to determine the sequence of the last remaining unknown segment of this protein. Residues 400--403 were identified as gly-Phe-Gln-Asn. Amide assignments were also made at positions 388 (glutamine), 389 (asparagine), 391 (aspartic acid) and 392 (glutamine).  相似文献   

2.
We have tested the hypothesis that isoaspartic acid residues in proteins can arise via errors that occur during protein synthesis. One such error involves a mischarging step in which the aspartic acid side-chain beta-carboxyl group is linked to the tRNA(Asp) instead of the main chain alpha-carboxyl group. If this altered Asp-tRNA(Asp) is a substrate for the ribosomal elongation reactions, a polypeptide will be made with an isoaspartic acid, or beta-linkage, in which the peptide chain is branched at the side chain of the aspartic acid residue. Using an ammonium sulfate fraction of aspartyl-tRNA(Asp) synthetase from Escherichia coli and [3H]aspartic acid, we have prepared [3H]aspartyl-tRNA(Asp) complexes and directly analyzed the linkage of the [3H]aspartate to the tRNA by identifying the products of ammonolysis. Normal attachment of the alpha-carboxyl group of aspartate to the tRNA produces [3H]isoasparagine, while the mischarging reaction leads to [3H]asparagine formation after ammonolysis. We have separated [3H]isoasparagine from [3H]asparagine and found an upper limit of 1 asparagine per 10,000 isoasparagines. These results show that the bacterial aminoacyl-tRNA synthetase can very accurately distinguish between the alpha- and beta-carboxyl groups of aspartic acid and suggest that only a very small fraction of the isoaspartic acid residues found to occur in cellular proteins may be the result of mischarging steps.  相似文献   

3.
A two-dimensional Fourier transform nuclear magnetic resonance study of the ribosomal protein E-L30 is reported. Five two-dimensional techniques, namely: nuclear magnetic resonance J-resolved spectroscopy, correlated spectroscopy, double quantum spectroscopy, relayed coherence transfer and nuclear Overhauser enhancement spectroscopy were used. Qualitative inspection of the spectra obtained by these techniques provided evidence that the E-L30 molecule has a well-defined structure in solution. This analysis indicated that, despite the fact that the protein is stable only at moderate temperatures and neutral pH, a structural analysis of the molecule would be feasible. A detailed analysis of the spectra permitted unambiguous discrimination between the spin systems of different amino acids, resulting in residue-specific resonance assignments. We were able to assign all resonances of all six threonine, four valine, five alanine, two histidine, two serine, one phenylalanine, one asparagine and one aspartic acid residue of E-L30. Complete resonance assignment was obtained for two glycine residues. Partial assignments became available for all six isoleucine, three glycine and one glutamine residue. These results form a sound basis for the structure determination of the protein described in the accompanying paper.  相似文献   

4.
Asparagine and aspartate are known to adopt conformations in the left-handed alpha-helical region and other partially allowed regions of the Ramachandran plot more readily than any other non-glycyl amino acids. The reason for this preference has not been established. An examination of the local environments of asparagine and aspartic acid in protein structures with a resolution better than 1.5 A revealed that their side-chain carbonyls are frequently within 4 A of their own backbone carbonyl or the backbone carbonyl of the previous residue. Calculations using protein structures with a resolution better than 1.8 A reveal that this close contact occurs in more than 80% of cases. This carbonyl-carbonyl interaction offers an energetic sabilization for the partially allowed conformations of asparagine and aspartic acid with respect to all other non-glycyl amino acids. The non-covalent attractive interactions between the dipoles of two carbonyls has recently been calculated to have an energy comparable to that of a hydrogen bond. The preponderance of asparagine in the left-handed alpha-helical region, and in general of aspartic acid and asparagine in the partially allowed regions of the Ramachandran plot, may be a consequence of this carbonyl-carbonyl stacking interaction.  相似文献   

5.
The amino acid compositions of proteins from halophilic archaea were compared with those from non-halophilic mesophiles and thermophiles, in terms of the protein surface and interior, on a genome-wide scale. As we previously reported for proteins from thermophiles, a biased amino acid composition also exists in halophiles, in which an abundance of acidic residues was found on the protein surface as compared to the interior. This general feature did not seem to depend on the individual protein structures, but was applicable to all proteins encoded within the entire genome. Unique protein surface compositions are common in both halophiles and thermophiles. Statistical tests have shown that significant surface compositional differences exist among halophiles, non-halophiles, and thermophiles, while the interior composition within each of the three types of organisms does not significantly differ. Although thermophilic proteins have an almost equal abundance of both acidic and basic residues, a large excess of acidic residues in halophilic proteins seems to be compensated by fewer basic residues. Aspartic acid, lysine, asparagine, alanine, and threonine significantly contributed to the compositional differences of halophiles from meso- and thermophiles. Among them, however, only aspartic acid deviated largely from the expected amount estimated from the dinucleotide composition of the genomic DNA sequence of the halophile, which has an extremely high G+C content (68%). Thus, the other residues with large deviations (Lys, Ala, etc.) from their non-halophilic frequencies could have arisen merely as "dragging effects" caused by the compositional shift of the DNA, which would have changed to increase principally the fraction of aspartic acid alone.  相似文献   

6.
The cDNA encoding Taka-amylase A (EC.3.2.1.1, TAA) was isolated to identify functional amino acid residues of TAA by protein engineering. The putative catalytic active-site residues and the substrate binding residue of TAA were altered by site-directed mutagenesis: aspartic acid-206, glutamic acid-230, aspartic acid-297, and lysine-209 were replaced with asparagine or glutamic acid, glutamine or aspartic acid, asparagine or glutamic acid, and phenylalanine or arginine, respectively. Saccharomyces cerevisiae strain YPH 250 was transformed with the expression plasmids containing the altered cDNA of the TAA gene. All the transformants with an expression vector containing the altered cDNA produced mutant TAAs that cross-reacted with the TAA antibody. The mutant TAA with alteration of Asp206, Glu230, or Asp297 in the putative catalytic site had no alpha-amylase activity, while that with alteration of Lys209 in the putative binding site to Arg or Phe had reduced activity.  相似文献   

7.
The substrate specificity of an intracellular proteinase from Streptococcus lactis was investigated in an effort to understand the role of the enzyme in the cell. Peptides in which the N-terminal residue was glycine were not hydrolyzed by the enzyme (exceptions were glycyl-alanine, glycyl-aspartic acid, and glycyl-asparagine), but the peptide was hydrolyzed if the N-terminal residue was alanine. The enzyme also showed activity toward peptides containing aspartic acid or asparagine. Hydrolysis of only the peptide bonds of alanyl, aspartyl, or asparaginyl residues was confirmed by the action of the enzyme on oxidized bovine ribonuclease A- and B- chain insulin. The N-terminal residues of the peptide fragments liberated were identified. The enzyme attacked both substrates only at alanyl, aspartyl, and asparaginyl residues, releasing these as free amino acids. In addition to alanine, aspartic acid, and asparagine, certain other amino acids were liberated from ribonuclease A, but these were accounted for by the relation of their position to alanine, aspartic acid, and asparagine residues.  相似文献   

8.
One mechanism for the spontaneous degradation of polypeptides is the intramolecular attack of the peptide bond nitrogen on the side chain carbonyl carbon atom of aspartic acid and asparagine residues. This reaction results in the formation of succinimide derivatives and has been shown to be largely responsible for the racemization, isomerization, and deamidation of these residues in several peptides under physiological conditions (Geiger, T. & Clarke, S. J. Biol. Chem. 262, 785-794 (1987]. To determine if similar reactions might occur in proteins, I examined the sequence and conformation about aspartic acid and asparagine residues in a sample of stable, well-characterized proteins. There did not appear to be any large bias against dipeptide sequences that readily form succinimides in small peptides. However, it was found that aspartyl and asparaginyl residues generally exist in native proteins in conformations where the peptide bond nitrogen atom cannot approach the side chain carbonyl carbon to form a succinimide ring. These orientations also represent energy minimum states, and it appears that this factor may account for a low rate of spontaneous damage to proteins by succinimide-linked reactions. The presence of aspartic acid and asparagine residues in other conformations, such as those in partially denatured, conformationally flexible regions, may lead to more rapid succinimide formation and contribute to the degradation of the molecule. The possible role of isoimide intermediates, formed by the attack of the peptide oxygen atom on the side chain carboxyl group, in protein racemization, isomerization, and deamidation is also considered.  相似文献   

9.
Millisecond photocycle kinetics were measured at room temperature for 13 site-specific bacteriorhodopsin mutants in which single aspartic acid residues were replaced by asparagine, glutamic acid, or alanine. Replacement of aspartic acid residues expected to be within the membrane-embedded region of the protein (Asp-85, -96, -115, or -212) produced large alterations in the photocycle. Substitution of Asp-85 or Asp-212 by Asn altered or blocked formation of the M410 photointermediate. Substitution of these two residues by Glu decreased the amount of M410 formed. Substitutions of Asp-96 slowed the decay rate of the M410 photointermediate, and substitutions of Asp-115 slowed the decay rate of the O640 photointermediate. Corresponding substitutions of aspartic acid residues expected to be in cytoplasmic loop regions of the protein (Asp-36, -38, -102, or -104) resulted in little or no alteration of the photocycle. Our results indicate that the defects in proton pumping which we have previously observed upon substitution of Asp-85, Asp-96, Asp-115, and Asp-212 [Mogi, T., Stern, L. J., Marti, T., Chao, B. H., & Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 4148-4152] are closely coupled to alterations in the photocycle. The photocycle alterations observed in these mutants are discussed in relation to the functional roles of specific aspartic acid residues at different stages of the bacteriorhodopsin photocycle and the proton pumping mechanism.  相似文献   

10.
Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VIIa, participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca2+ and tissue factor. Three types of potential posttranslational modifications exist in the human factor VIIa molecule, namely, 10 gamma-carboxylated, N-terminally located glutamic acid residues, 1 beta-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VIIa as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VIIa. By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradations, the protein backbone of recombinant factor VIIa was found to be identical with human factor VIIa. Neither recombinant factor VIIa nor human plasma factor VIIa was found to contain beta-hydroxyaspartic acid. In human plasma factor VIIa, the 10 N-terminally located glutamic acid residues were found to be fully gamma-carboxylated whereas 9 full and 1 partial gamma-carboxylated residues were found in the corresponding positions of the recombinant factor VIIa molecule. Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VIIa. In the recombinant factor VIIa, asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VIIa and human plasma factor VIIa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Free protein amino acids have been quantitatively determined in 30 red algae. In most of the species, aspartic acid (asparagine), glutamic acid (glutamine), alanine, glycine and serine dominate, while massive accumulation of proline (up to 80·5%) was observed in six species, all belonging to the family Rhodomelaceae.  相似文献   

12.
The primary structure of an antitumor protein, neocarzinostatin, has been reinvestigated by conventional and gas-phase Edman degradation procedures. Sequence analyses of tryptic peptides of both S-carboxymethylated and S-aminoethylated derivatives as well as peptic peptides of the native protein revealed a revised primary structure of neocarzinostatin. The present sequence of 113 amino acid residues thus established agrees with results obtained by fast atom bombardment and gas chromatographic mass spectrometry which were published recently [B.N. Gibson, W.C. Herlihy, T.S.A. Samy, K.S. Hahm, H. Maeda, J. Meienhofer, and K. Biemann (1984) J. Biol. Chem. 259, 10801-10806]. The assignment of four intriguing asparagine/aspartic acid residues has been also achieved.  相似文献   

13.
Glycogenin is a glycosyltransferase that functions as the autocatalytic initiator for the synthesis of glycogen in eukaryotic organisms. Prior structural work identified the determinants responsible for the recognition and binding of UDP-glucose and the catalytic manganese ion and implicated two aspartic acid residues in the reaction mechanism for self-glucosylation. We examined the effects of substituting asparagine and serine for the aspartic acid residues at positions 159 and 162. We also examined whether the truncation of the protein at residue 270 (delta270) was compatible with its structural integrity and its functional role as the initiator for glycogen synthesis. The truncated form of the enzyme was indistinguishable from the wild-type enzyme by all measures of activity and could support glycogen accumulation in a glycogenin-deficient yeast strain. Substitution of aspartate 159 by either serine or asparagine eliminated self-glucosylation and reduced trans-glucosylation activity by at least 260-fold but only reduced UDP-glucose hydrolytic activity by 4-14-fold. Substitution of aspartate 162 by either serine or asparagine eliminated self-glucosylation activity and reduced UDP-glucose hydrolytic activity by at least 190-fold. The trans-glucosylation of maltose was reduced to undetectable levels in the asparagine 162 mutant, whereas the serine 162 enzyme showed only an 18-30-fold reduction in its ability to trans-glucosylate maltose. These data support a role for aspartate 162 in the chemical step for the glucosyltransferase reaction and a role for aspartate 159 in binding and activating the acceptor molecule.  相似文献   

14.
The RNA-dependent RNA polymerase from rabbit hemorrhagic disease virus, a calicivirus, is known to have a conserved GDD amino acid motif and several additional regions of sequence homology with all types of polymerases. To test whether both aspartic acid residues are in fact involved in the catalytic activity and metal ion coordination of the enzyme, several defined mutations have been made in order to replace them by glutamate, asparagine, or glycine. All six mutant enzymes were produced in Escherichia coli, and their in vitro poly(U) polymerase activity was characterized. The results demonstrated that the first aspartate residue was absolutely required for enzyme function and that some flexibility existed with respect to the second, which could be replaced by glutamate.  相似文献   

15.
Abstract The MukB protein is essential for chromosome partitioning in Escherichia coli and consists of 1484 amino acid residues (170 kDa). We have determined the base changes at the mutated sites of the mukB106 mutant and a newly isolated mutant, mukB33 . These mutant mukB genes were each found to carry a single base-pair transition which leads to an amino acid substitution; a serine residue at position 33 was changed to phenylalanine in the case of mukB106 , and an aspartic acid residue at position 1201 was changed to asparagine in the case of mukB33 .  相似文献   

16.
After degradation of canine prothrombin by the complex of Streptomyces griseus proteases four glycopeptides were obtained. Each of them contained aspartic acid, hexosamines, mannose, galactose and sialic acids. Canine prothrombin contains two or three carbohydrate chanins, which are bound to aspartic (asparagine) residues. Microheterogenity of the carbohydrate chains of canine prothrombin was found.  相似文献   

17.
Racemization of Individual Aspartate Residues in Human Myelin Basic Protein   总被引:1,自引:0,他引:1  
Human myelin basic protein (MBP), a long-lived brain protein, undergoes gradual racemization of its amino acids, primarily aspartic acid and serine. Purified protein was treated at neutral pH with trypsin to yield peptides that were separated by HPLC using a C18 column. Twenty-nine peptides were isolated and analyzed for amino acid composition and aspartate racemization. Each aspartate and asparagine in the protein was racemized to a different extent, ranging from 2.2 to 17.1% D isomer. When the racemization was examined in terms of the beta-structure model of MBP, a correlation was observed in which six aspartate/asparagine residues assumed to be associated with myelin membrane lipids showed little racemization (2.2-4.9% D isomer), whereas five other aspartate residues were more highly racemized (9.9-17.1% D isomer). Although the observed aspartate racemization may be related to steric hindrance by neighboring residues and/or the protein secondary structure, interaction of aspartates with membrane lipids may also be a major factor. The data are compatible with a model in which each MBP molecule interacts with adjacent cytoplasmic layers of myelin membrane through a beta-sheet on one surface and loops and helices on the other surface, thereby stabilizing the myelin multilamellar structure.  相似文献   

18.
Vitellin is a major yolk protein that plays a significant role in the embryonic development of crustacean embryos. This protein was rapidly purified from embryos of the estuarine amphipod, Leptocheirus plumulosus, by subjecting the crude protein homogenate to high affinity column chromatography. SDS-PAGE revealed a single band with an approximate molecular weight of 200,000 daltons. Vitellin was characterized by SDS-PAGE techniques and amino acid composition analysis. L. plumulosus vitellin is a lipoglycophosphoprotein with serine, glutamic acid/glutamine, alanine, and aspartic acid/asparagine accounting for almost 66% of all amino acid residues. Polyclonal antibodies were raised against L. plumulosus vitellin and antibody reactivity was verified by dot-blotting and immuno-fluorescence confocal microscopy. These antibodies are specific for purified vitellin and show little cross-reactivity with other embryonic proteins.  相似文献   

19.
The values of maximum frequencies, intensities, and other spectral parameters of the main absorption bands of amino acid residue side-chain groups have been obtained in the 1500–1800-cm?1 region for solutions in heavy water at pD 1–12. It is shown that absorption of residues of asparagine, glutamine, aspartic and glutamic acids, arginine, and tyrosine must be taken into account in quantitative studies of the infrared spectra of polypeptide and protein solutions in heavy water. Examples of separating out the amide I band for ribonuclease A in heavy water are given.  相似文献   

20.
All of the vitamin K-dependent plasma proteins with domains that are homologous to the epidermal growth factor (EGF) precursor have 1 hydroxylated aspartic acid residue in the NH2-terminal EGF-homology region. In addition, protein S has 1 hydroxylated asparagine residue in each of the three COOH-terminal EGF-homology regions. All of these proteins have been found to have the amino acid sequence, CX(D or N)XXXX(F or Y)XCXC (corresponding to residues 20 to 33 in EGF), where the Asp or Asn residue is hydroxylated. This sequence also appears in two of the three EGF-homology regions of the human low density lipoprotein receptor and in two of the six EGF-homology regions of bovine thrombomodulin so far identified, suggesting that they may have the modified amino acid. We have now identified beta-hydroxyaspartic acid in acid hydrolysates of both these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号