首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Spores of four species of microsporidia isolated from humans were analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and specific biomarkers were found for each. The microsporidia analyzed included three species, Encephalitozoon cuniculi, Encephalitozoon hellem, and Encephalitozoon intestinalis and the fourth organism is the recently described Brachiola algerae. Whole spores, spore shells, and soluble fractions were applied directly to the MALDI target without further purification steps. MALDI-TOF MS analysis of both whole spores and soluble fractions of the four isolates revealed a group of unique, characteristic, and reproducible spectral markers in the mass range of 2,000-8,000 Da. Statistical analysis of the averaged centroided masses uncovered two distinct sets of unique peptides or biomarkers, one originated from whole spores and the other from soluble fractions, that can differentiate the four microsporidian species studied. MALDI-TOF MS analysis of whole organisms is a rapid, sensitive, and specific option to characterize microsporidian isolates and has the potential for several applications in parasitology.  相似文献   

3.
Although leukotrienes are believed to mediate symptoms of human lung disease, there is little direct evidence of their existence in the lung. This is due to the difficulty in obtaining lung samples, the small amounts of leukotrienes typically present in such samples and the problems associated with purifying and analyzing leukotrienes in complex biological samples. In this study, lung lavagates were collected and analyzed for leukotrienes. The methods in this analysis included solid phase extraction using a C-18 reverse phase cartridge followed by HPLC using a new photodiode array detector which provides full UV spectra of eluting compounds. Lung lavage fluid from a patient with chronic pulmonary disease contained a compound with a UV spectra of LTB4 which was found to elute with synthetic [3H]-LTB4. This compound was confirmed as LTB4 using gas chromatography/mass spectrometry in the negative ion-chemical ionization mode. The inclusion of oxygen-18 LTB4 as an internal standard allowed approximate quantitation of the amount of LTB4 present in this 5 ml lung lavagate as 40-50 ng.  相似文献   

4.
While the incidence of blunt carotid artery injuries is low, the mortality rate is extremely high (40%). Clinical evidence indicates that the intimal region of the artery often sustains failure, while maintaining the integrity of the outer layers. This condition may lead to delayed ischemic symptoms, commonly reported in clinical literature. To date, the mechanical properties of the intima relative to the outer vessel layers have not been quantified in the human carotid artery. The purpose of the present study was to develop a methodology to determine the longitudinal mechanical properties of the human internal carotid artery in tension, with an emphasis on intimal failure. This was accomplished by opening the vessel at the mid-diameter level, creating an ‘I’-shaped testing specimen, subjecting the specimen to failure loading, documenting the stretch characteristics of the intimal and adventitial sides in the temporal domain, and correlating the synchronized videography with mechanical loading. Intimal failure data were quantified using stress and strain parameters in conjunction with digital videography of the intimal and adventitial sides. The present methodology can be used to determine the mechanical properties of the intima relative to ultimate carotid artery failure. These data will assist in the understanding of blunt carotid artery injuries, its diagnosis and treatment.  相似文献   

5.
Acyl-CoAs are intermediates of numerous metabolic processes in eukaryotic cells, including beta-oxidation within mitochondria and peroxisomes, and the biosynthesis/remodeling of lipids (e.g. mono-, di-, and triglycerides, phospholipids and sphingolipids). Investigations of lipid metabolism have been advanced by the ability to quantitate acyl-CoA intermediates via liquid chromatography coupled to electrospray ionization-tandem mass spectrometric detection (LC-ESI-MS/MS), which is presently one of the most sensitive and specific analytical methods for both lipids and acyl-CoAs. This review of acyl-CoA analysis by mass spectrometry focuses on mammalian samples and long-chain analytes (i.e. palmitoyl-CoA), particularly reports of streamlined methodology, improved recovery, or expansion of the number of acyl chain-lengths amenable to quantitation.  相似文献   

6.
The present paper examines the results of quantitative assessment of intimal longitudinal smooth muscle (ILSM) in small arteries from normal mesentery in man. 212 vessels from 24 patients who underwent colectomy for colorectal carcinoma were studied. The mean amount of ILSM in these vessels was found to be 1.42% (range 0.00-8.90%) of external vessel diameter. A statistically significant (p = 0.018) positive correlation was demonstrated between the mean amount of ILSM in vessels from any individual patient and the level of diastolic blood pressure. It is concluded that increased intravascular tension is one factor which influences the development of ILSM in human small mesenteric arteries.  相似文献   

7.
The catalytic core of the phagocyte NADPH oxidase is a heterodimeric integral membrane protein (flavocytochrome b (Cyt b)) that generates superoxide and initiates a cascade of reactive oxygen species critical for the host inflammatory response. In order to facilitate structural characterization, the present study reports the first direct analysis of human phagocyte Cyt b by matrix-assisted laser desorption/ionization and nanoelectrospray mass spectrometry. Mass analysis of in-gel tryptic digest samples provided 73% total sequence coverage of the gp91(phox) subunit, including three of the six proposed transmembrane domains. Similar analysis of the p22(phox) subunit provided 72% total sequence coverage, including assignment of the hydrophobic N-terminal region and residues that are polymorphic in the human population. To initiate mass analysis of Cyt b post-translational modifications, the isolated gp91(phox) subunit was subject to sequential in-gel digestion with Flavobacterium meningosepticum peptide N-glycosidase F and trypsin, with matrix-assisted laser desorption/ionization and liquid chromatography-mass spectrometry/mass spectrometry used to demonstrate that Asn-132, -149, and -240 are genuinely modified by N-linked glycans in human neutrophils. Since the PLB-985 cell line represents an important model system for analysis of the NADPH oxidase, methods were developed for the purification of Cyt b from PLB-985 membrane fractions in order to confirm the appropriate modification of N-linked glycosylation sites on the recombinant gp91(phox) subunit. This study reports extensive sequence coverage of the integral membrane protein Cyt b by mass spectrometry and provides analytical methods that will be useful for evaluating posttranslational modifications involved in the regulation of superoxide production.  相似文献   

8.
Wang Y  Karu K  Griffiths WJ 《Biochimie》2007,89(2):182-191
In man the brain represents about 2% of the body weight, but contains 25% of the body's cholesterol. Cholesterol itself does not cross the blood-brain barrier and is synthesised in situ. Excess cholesterol from brain is exported in the form of oxysterols, or metabolised to steroids, which in contrast to cholesterol can cross the blood-brain barrier. Steroids and oxysterols may be synthesised in brain, but can also be transported into brain from peripheral tissue. Both oxysterols and steroids have biological activity in brain. They can behave as ligands for classical nuclear receptors, and exert their effects over hours to days, or interact with neurotransmitter gated ion channels and modulate neural transmission exerting their effects in milliseconds. The exact sterol and steroid content of brain has yet to be thoroughly characterised. In this mini-review we will discuss mass spectrometry methods for the analysis of steroids and sterols in brain, and propose methods suitable for the profiling of different brain regions with high sensitivity (sub pg) and specificity.  相似文献   

9.
The reversible phosphorylation of proteins is recognized as an essential post-translational modification regulating cell signaling and ultimately function of biological systems. Detection of phosphopeptides and localization of phosphorylation sites remains quite a challenge, even if the protein is purified to near homogeneity. Mass spectrometry has become a vital technique that is routinely utilized for the identification of proteins from whole cell lysates. Nonetheless, due to the minimal amount of phosphorylation found on proteins, enrichment steps for isolating phosphopeptides from complex mixtures have been the focus of many research groups world-wide. In this review, we describe some current methods for the enrichment of phosphopeptides that are compatible with mass spectrometry for assignment of phosphorylation sites. Phosphorylation modifications on proteins and peptides are either directly isolated by solid-phase approaches or chemically modified for selective isolation and/or improved characterization by mass spectrometry. These strategies hold the potential for rapid and sensitive profiling of phosphoproteins from a variety of sources and cellular conditions.  相似文献   

10.
James DC 《Cytotechnology》1996,22(1-3):17-24
The advent of new technologies for analysis of biopolymers by mass spectrometry has revolutionised strategies for recombinant protein characterization. The principal recent developments have been matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Using these tools, accurate molecular mass determinations can now be obtained routinely-often using minute (picomole-femtomole) quantities of protein or protein fragments. These techniques have proved indispensible for detailed characterization of the post-translational modifications of recombinant proteins produced by eukaryotic systems. Glycosylation is arguably the most important and complex of these modifications and has prompted widespread use of these new techniques. In this mini-review article I describe recent advances in the use of mass spectrometry for analysis of recombinant glycoproteins.  相似文献   

11.
Analysis of protein glycosylation by mass spectrometry   总被引:1,自引:0,他引:1  
There is a growing pharmaceutical market for protein-based drugs for use in therapy and diagnosis. The rapid developments in molecular and cell biology have resulted in production of expression systems for manufacturing of recombinant proteins and monoclonal antibodies. These proteins are glycosylated when expressed in cell systems with glycosylation ability. For glycoproteins intended for therapeutic administration it is important to have knowledge about the structure of the carbohydrate side chains to avoid cell systems that produce structures, which in humans can cause undesired reactions, e.g., immunological and unfavorable serum clearance rate. Structural analysis of glycoprotein oligosaccharides requires sophisticated instruments like mass spectrometers and nuclear magnetic resonance spectrometers. However, before the structural analysis can be conducted, the carbohydrate chains have to be released from the protein and purified to homogeneity, and this is often the most time-consuming step. Mass spectrometry has played and still plays an important role in analysis of protein glycosylation. The superior sensitivity compared to other spectroscopic methods is its main asset. Structural analysis of carbohydrates faces several problems, however, due to the chemical nature of the constituent monosaccharide residues. For oligosaccharides or glycoconjugates, the structural information from mass spectrometry is essentially limited to monosaccharide sequence, molecular weight, and only in exceptional cases glycosidic linkage positions can be obtained. In order to completely establish an oligosaccharide structure, several other structural parameters have to be determined, e.g., linkage positions, anomeric configuration and identification of the monosaccharide building blocks. One way to address some of these problems is to work on chemical pretreatment of the glycoconjugate, to specifically modify the carbohydrate chain. In order to introduce specific modifications, we have used periodate oxidation and trifluoroacetolysis with the objective of determining glycosidic linkage positions by mass spectrometry.  相似文献   

12.
We present a detailed protocol for the structural analysis of protein-linked glycans. In this approach, appropriate for glycomics studies, N-linked glycans are released using peptide N-glycosidase F and O-linked glycans are released by reductive alkaline beta-elimination. Using strategies based on mass spectrometry (matrix-assisted laser desorption/ionization-time of flight mass spectrometry and nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS-MS)), chemical derivatization, sequential exoglycosidase digestions and linkage analysis, the structures of the N- and/or O-glycans are defined. This approach can be used to study the glycosylation of isolated complex glycoproteins or of numerous glycoproteins encountered in a complex biological medium (cells, tissues and physiological fluids).  相似文献   

13.
It has been well documented that papain cleaves an IgG1 molecule to release Fab and Fc domains; however, papain was found unable to release such domains from an IgG2. Here we present a new combinatory strategy to analyze the heterogeneity of the light chain (LC), single chain Fc (sFc), and Fab portion of the heavy chain (Fd) of an IgG2 molecule released by papain cleavage under mild reducing conditions. These domains were well separated on reversed-phase high performance liquid chromatography (RP-HPLC) and analyzed by in-line liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS). In addition, some modifications of these domains were revealed by in-line mass spectrometry, and confirmed by the peptide mapping on LC–MS/MS analysis. This same strategy was proven suitable for IgG1 molecules as well. This procedure provides a simplified approach for the characterization of antibody biomolecules by facilitating the detection of low-level modifications in a domain. In addition, the technique offers a new strategy as an identification assay to distinguish IgG2 molecules on RP-HPLC, by which highly conserved Fc domains remain at a constant retention time (RT) unique to its subisotype, while varying RTs of the light chain and the Fd distinguish the monoclonal antibody from other molecules of the same isotype based on the underlying characteristics of each antibody.  相似文献   

14.
We compared the 2DE coupled to MALDI-TOF-MS and ESI-MS/MS analysis (2DE-MS) and the on-line 2D nanoLC, followed by nanoESI-MS/MS analysis (2DLC-MS), for the separation and identification of proteins in high abundance protein-depleted human plasma. Identification of proteins in the plasma by the two methods demonstrated that the majority of the identified protein set was unique to each method. Therefore, if a comprehensive coverage of the proteome identification is desired, it is ideal to apply both methods. The 2DE-MS method is amenable to protein spot-based quantitation, whereas the 2DLC-MS method may provide an advantage of the high throughput application.  相似文献   

15.
16.
Solubility of acetylene in human blood determined by mass spectrometry   总被引:1,自引:0,他引:1  
  相似文献   

17.
Hong SP  Shin SK  Lee EH  Kim EO  Ji SI  Chung HJ  Park SN  Yoo W  Folk WR  Kim SO 《Nature protocols》2008,3(9):1476-1484
We describe a matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS)-based assay for human papillomavirus (HPV) genotyping--the restriction fragment mass polymorphism (RFMP) assay, which is based on mass measurement of genotype-specific oligonucleotide fragments generated by TypeIIS restriction endonuclease cleavage after recognition sites have been introduced by PCR amplification. The use of a TypeIIS restriction enzyme makes the RFMP assay independent of sequence and applicable to a wide variety of HPV genotypes, because these enzymes have cleavage sites at a fixed distance from their recognition sites. After PCR amplification, samples are subjected to restriction enzyme digestion with FokI and BtsCI and desalting using Oasis purification plates, followed by analysis by MALDI-TOF MS. Overall, the protocol is simple, takes approximately 4-4.5 h and can accurately detect and identify at least 74 different HPV genotypes.  相似文献   

18.
Analysis of the proteoglycans synthesized by human bone cells in vitro   总被引:3,自引:0,他引:3  
Proteoglycans were isolated by ion-exchange chromatography from the extracted cell layer and culture medium of human bone cell cultures following incubation in the presence of [35S]sulfate and [3H]leucine. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the synthesized proteoglycans consisted of at least five polydisperse species having median apparent Mr = 600,000, 400,000, 270,000, 135,000 and 40,000. When chromatographed further on octyl-Sepharose CL-4B, the proteoglycans of the cell layer resolved into three peaks. The unbound fraction (peak cell layer-I) contained a 40,000 species consisting of a single glycosaminoglycan chain with or without peptide. Peak cell layer-II contained three sulfated species on electrophoresis: a 600,000 species uniformly distributed across the peak, a 135,000 species enriched in the ascending limb (similar to bone PG-I as described previously), and a 270,000 species (similar to bone PG-I) enriched in the descending limb. Peak cell layer-III, eluting at 0.2% Triton X-100, was highly enriched in a 400,000 proteoglycan component. When media proteoglycans were chromatographed on octyl-Sepharose, two labeled peaks were found. Peak medium-I (unbound) contained a species exhibiting electrophoretic mobility similar to that of the 400,000 species present in peak cell layer-III. Peak II of the culture medium (medium-II) was apparently identical to that of peak cell layer-II, containing the 600,000, 270,000 and 135,000 species. No appreciable 40,000 species was observed in the medium. Treatment of the 600,000 species with either chondroitinase ABC or ACII generated a core protein preparation with bands of 390,000 and 340,000 on SDS gels. Neither the intact nor the chondroitinase ABC-treated 600,000 species was immunoprecipitated by a purified, polyclonal antiserum raised against the core protein of the large chondroitin sulfate proteoglycan of human articular cartilage. Treatment of the 270,000 and 135,000 proteoglycans with chondroitinase ABC, but not ACII, generated a core protein preparation with bands of 52,000 and 49,000 on SDS gels, indicating that they were dermatan sulfate-containing species. The 400,000 species contained both heparan sulfate and chondroitin sulfate, in approximately a 3:1 labeling ratio. This species changed in electrophoretic mobility following treatment with chondroitinase ABC, heparatinase, or both enzymes in combination, which suggested that it may be a hybrid proteoglycan (i.e. both types of glycosaminoglycan chain on the same core protein).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The enzyme lysozyme is used as a preservative to prevent late blowing of ripened cheese, caused by Clostridium tyrobutyricum. Since the enzyme is extracted from hen egg white, lysozyme has to be declared on food product labels as a potential allergen. Here, a method is reported that combines immunocapture purification and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis for the detection of lysozyme in cheese samples. Cheese extracts were treated with magnetic particles coated with a monoclonal antibody directed against lysozyme. After immunocapture purification, lysozyme was detected by MALDI-TOF-MS. The limit of detection of the assay was about 5 mg/kg lysozyme in cheese. The method reliably distinguished between cheese samples which had been produced with and without lysozyme. Thus, the novel assay allows the reliable, sensitive, and specific detection of lysozyme in a food matrix. The assay could be easily adapted to other target peptides and proteins in complex food matrices and, therefore, has a broad application potential, e.g. for the analysis of allergens.  相似文献   

20.
Analysis of phosphorylated proteins and peptides by mass spectrometry   总被引:7,自引:0,他引:7  
Phosphorylation on serine, threonine and tyrosine residues is an extremely important modulator of protein function. Therefore, there is a great need for methods capable of accurately elucidating sites of phosphorylation. Although full characterization of phosphoproteins remains a formidable analytical challenge, mass spectrometry has emerged as an increasingly viable tool for this task. This review summarizes the methodologies currently available for the analysis of phosphoproteins by mass spectrometry, including enrichment of compounds of interest using immobilized metal affinity chromatography and chemical tagging techniques, detection of phosphopeptides using mass mapping and precursor ion scans, localization of phosphorylation sites by peptide sequencing, and quantitation of phosphorylation by the introduction of mass tags. Despite the variety of powerful analytical methods that are now available, complete characterization of the phosphorylation state of a protein isolated in small quantities from a biological sample remains far from routine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号