首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Newly absorbed retinol is transported in association with chylomicrons and their remnants. In addition, after intake of high doses of retinol, significant amounts are also found in low-density lipoprotein (LDL). As both chylomicron remnants and LDL may be taken up by cells via the LDL receptor, and retinoids inhibit proliferation of some leukaemic cells, we have studied the uptake of retinol in leukaemic cells via the LDL-receptor pathway. HL-60 cells contain saturable binding sites for LDL. The binding of LDL to its receptor has a dissociation constant of about 3.2 x 10(-9) M, and the number of receptors per cell was calculated to be about 2700. Uptake of 125I-LDL by HL-60 cells was increased 2-fold by preincubating the cells with mevinolin. The presence of specific receptors for LDL on HL-60 cells was further confirmed by the finding that exogenous LDL cholesterol was able to up-regulate the ACAT (acyl-CoA: cholesterol acyltransferase) activity of HL-60 cells. We then tested the uptake of retinyl ester in leukaemic cells via the LDL-receptor pathway. HL-60 cells were incubated with LDL or chylomicron remnants labelled with [3H]retinyl palmitate. Uptake of retinyl ester associated with both LDL and chylomicron remnants was observed. Furthermore, the presence of excess LDL decreased the uptake by 75-100%, supporting the hypothesis that the uptake of retinyl ester occurred via the LDL receptor in HL-60 cells.  相似文献   

3.
Purification and characterization of human liver sorbitol dehydrogenase   总被引:1,自引:0,他引:1  
W Maret  D S Auld 《Biochemistry》1988,27(5):1622-1628
Sorbitol dehydrogenase from human liver was purified to homogeneity by affinity chromatography on immobilized triazine dyes, conventional cation-exchange chromatography, and high-performance liquid chromatography. The major form is a tetrameric, NAD-specific enzyme containing one zinc atom per subunit. Human liver sorbitol dehydrogenase oxidizes neither ethanol nor other primary alcohols. It catalyzes the oxidation of a secondary alcohol group of polyol substrates such as sorbitol, xylitol, or L-threitol. However, the substrate specificity of human liver sorbitol dehydrogenase is broader than that of the liver enzymes of other sources. The present report describes the stereospecific oxidation of (2R,3R)-2,3-butanediol, indicating a more general function of sorbitol dehydrogenase in the metabolism of secondary alcohols. Thus, the enzyme complements the substrate specificities covered by the three classes of human liver alcohol dehydrogenase.  相似文献   

4.
Two phosphorylase phosphatase activities (I and III) have been purified from rabbit liver, with respective molecular weights of 117,000 and 230,000. Phosphatase III contained three different subunits of molecular weights 35,000, 67,000 and 80,000. Phosphatase I although majoritary in the preparation, was not homogeneous. Both phosphatases were dissociated by 2-mercaptoethanol treatment, releasing a catalytic subunit with a molecular weight of about 35,000. Phosphatases I and III activities responded very differently to incubation with trypsin and to ethanol precipitation. Phosphatase III was much more sensitive to inactivation by several ions and ATP than phosphatase I. On the basis of the obtained data, phosphatase I can be classified as a type-1 phosphatase and phosphatase III as a type-1 phosphatase.  相似文献   

5.
Two forms of porcine histone acetyltransferase (types I and II) have been purified to apparent homogeneity from liver nuclei. Both activities are extracted from nuclei by 0.5 M NaCl and display a native Mr of 110,000 as determined by gel filtration. Saline enzyme extracts were subject to ammonium sulfate precipitation and sequential chromatography on Q-Sepharose, Sephacryl S-200, hydroxylapatite, and Mono Q supports. The histone acetyltransferase type I fraction contains three polypeptide chains with apparent Mr values of 105,000, 62,000, and 45,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cyanogen bromide peptide mapping and immunoblotting suggest that the Mr 62,000 and 45,000 polypeptides are derived by cleavage of the Mr 105,000 polypeptide. Histone acetyltransferase type II contains two different subunits with apparent Mr values of 50,000 and 40,000, respectively. The amino acid composition, heat inactivation profiles, and Michaelis constants with respect to both acetyl coenzyme A and histones were indistinguishable for types I and II. However, affinity-purified polyclonal antibodies to both forms of the enzyme do not cross-react; cyanogen bromide-derived in situ cleavage digest patterns show few similarities; and the turnover number for type I is approximately 15-fold lower than that for type II. We estimate that there is one enzyme molecule for every 500 nucleosomes. The existence of two distinct forms of nuclear histone acetyltransferase in pig liver suggests that they may have separate functions in vivo.  相似文献   

6.
Glycolate oxidase, an FMN-dependent peroxisomal oxidase, plays an important role in plants, related to photorespiration, and in animals, where it can contribute to the production of oxalate with formation of kidney stones. The best studied plant glycolate oxidase is that of spinach; it has been expressed as a recombinant enzyme, and its crystal structure is known. With respect to animals, the enzyme purified from pig liver has been characterized in detail in terms of activity and inhibition, the enzyme from human liver in less detail. We describe here the purification and initial characterization of the recombinant human glycolate oxidase. Its substrate specificity and the inhibitory effects of a number of anions are in agreement with the properties expected from previous work on glycolate oxidases from diverse sources. The recombinant enzyme presents an inhibition by excess glycolate and by excess DCIP, which has not been documented before. These inhibitions suggest that glycolate binds to the active site of the reduced enzyme, and that DCIP also has affinity for the oxidized enzyme. Glycolate oxidase belongs to a family of l-2-hydroxy-acid-oxidizing flavoenzymes, with strongly conserved active-site residues. A comparison of some of the present results with studies dealing with other family members suggests that residues outside the active site influence the binding of a number of ligands, in particular sulfite.  相似文献   

7.
Arylacetamide deacetylation is an important enzyme activity in the metabolic activation of arylamine substrates to ultimate carcinogens, best described as a carboxylesterase/amidase type of reaction. A 7-fold variation in the Vmax of 2-acetylaminofluorene deacetylation in 24 human livers was observed. An acetylaminofluorene deacetylase was purified 90 fold from human liver microsomes by PEG-fractionation, anion exchange and hydrophobic interaction chromatography. The purified 45kD protein showed no amino acid sequence homology to other carboxylesterases, neither in its N-terminus nor in tryptic peptides. Antibodies raised against the deacetylase recognized the protein with high specificity. This report thus describes the first arylacetamide deacetylase in human liver.  相似文献   

8.
Purification and characterization of a ribonuclease from human liver   总被引:3,自引:0,他引:3  
The major ribonuclease of human liver has been isolated in a four-step procedure. The protein appears homogeneous by several criteria. The amino acid composition and the amino-terminal sequence of the enzyme indicate that the protein is related to human pancreatic ribonuclease and to angiogenin, and that it may be identical with an eosinophil-derived neurotoxin and to a ribonuclease that has been isolated from urine. The catalytic activity of the liver ribonuclease and its sensitivity to iodoacetic acid inactivation also relate the enzyme to the pancreatic RNases, but the liver protein is clearly differentiated by immunological measurements. Antibodies to the liver ribonuclease inhibit its activity, but not that of the human pancreatic enzyme; cross-reactivity in a radioimmunological assay is small but measurable. Immunochemical measurements have been used to examine the distribution of the liver-type protein in other tissues. Inhibition of enzyme activity by anti-liver ribonuclease shows that a cross-reactive enzyme is predominant in extracts of spleen and is a significant component in kidney preparations, while the liver-type protein is almost absent in brain or pancreas homogenates. Cross-reactive ribonuclease is present in serum, but levels are not correlated with any of the disease states examined.  相似文献   

9.
The toxic organochlorine pesticide, chlordecone (Kepone), is excreted in human bile primarily as a stable, reduced monoalcohol metabolite. This bioreduction is catalyzed by a hepatic cytosolic enzyme activity termed chlordecone reductase. We purified this enzyme from human liver and found that chlordecone reductase resembles the family of xenobiotic metabolizing enzymes referred to as the aldo-keto reductases based on its biochemical characteristics, including its ability to catalyze the reduction of a carbonyl-containing substrate. However, analyses of liver cytosolic samples on immunoblots developed with anti-chlordecone reductase antibodies revealed that immunoreactive proteins were present only in those mammalian species that convert chlordecone to chlordecone alcohol in vivo (man, gerbil, and rabbit) and not in those species unable to reduce chlordecone (rat, mouse, and hamster). Hence, chlordecone reductase is unique among aldo-keto reductases in being species-specific. Quantitative immunoblot analyses of seven human liver specimens disclosed two immunoreactive proteins whose total concentration varied over a 6-fold range. Moreover, the amount of immunoreactive protein was directly proportional to chlordecone reductase activity in each sample. We conclude that chlordecone reductase is a unique aldo-keto reductase of potential clinical importance whose expression varies markedly among individuals.  相似文献   

10.
A BAL17 B lymphoma cell line bearing mu and delta chains on its surface behaves in a similar manner to normal mature B cells in terms of initial biochemical transmembrane signalling [Mizuguchi, Beaven, Ohara & Paul (1986) J. Immunol. 137, 2162-2167; Mizuguchi, Yong-Yong, Nakabayashi, Huang, Beaven, Chused & Paul (1987) J. Immunol. 139, 1054-1059]. Therefore the effects of protease inhibitors on increases in inositol phospholipid metabolism and intracellular free calcium concentration ([Ca2+]i) were examined. We show that the serine protease inhibitors Tos-Phe-CH2Cl (1-chloro-4-phenyl-3-L-tosylamidobutan-2-one-, TPCK) and Tos-Lys-CH2Cl (7-amino-1-chloro-3-L-tosylamidoheptan-2-one; TLCK) inhibit anti-IgM-mediated accumulation of inositol phosphates in a dose-dependent manner. InsP3 production induced by anti-IgM is also inhibited by pretreatment with Tos-Lys-CH2Cl or Tos-Phe-CH2Cl. Tos-Lys-CH2Cl- Tos-Phe-CH2Cl-mediated inhibition is not overcome by high concentrations of anti-IgM. Moreover, anti-IgM-mediated increases in [Ca2+]i are inhibited by pretreatment of the cells with these inhibitors. However, increases in inositol phospholipid metabolism caused by NaF, an activator of guanine-nucleotide-binding proteins (G-proteins), are approx. 10-fold more resistant to Tos-Lys-CH2Cl and Tos-Phe-CH2Cl inhibition compared with anti-IgM-induced changes. Furthermore, NaF-induced increases in [Ca2+]i are not inhibited by Tos-Lys-CH2Cl or Tos-Phe-CH2Cl pretreatment, suggesting that the inhibitors act at a step proximal to phospholipase C activation. The Tos-Lys-CH2Cl or Tos-Phe-CH2Cl treatment does not change the membrane IgM density as measured by flow cytometry, indicating that the active site of the inhibitors is distal to the membrane IgM molecule. These results indicate that serine proteases may be involved in coupling the receptor cross-linkage to G-protein.  相似文献   

11.
A deficiency in alpha-N-acetylglucosaminidase is known as mucopolysaccharidosis IIIB or Sanfilippo B syndrome. We purified this enzyme almost 39,000-fold from liver to homogeneity with 3% recovery. Use of concanavalin A (Con A)-Sepharose and heparin-Sepharose resulted in 13.4-fold and 11.6-fold purifications of the enzymatic activity, respectively. The molecular mass was estimated to be 300 kDa by gel filtration and 80 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The isoelectric point was 5.1, optimal pH was 4.5, and the Km for p-nitrophenyl alpha-N-acetylglucosamine was 0.13-0.20 mM. The purified enzyme was stable at 50 degrees C for 1 h and within the pH range of 6.5-8.5. Anti-serum against the purified enzyme raised in BALB/c mice inhibited the activities of alpha-N-acetylglucosaminidase.  相似文献   

12.
Methylenetetrahydrofolate reductase from human cadaver liver was purified to homogeneity. The purified enzyme had a molecular mass of 150 kDa. On SDS-polyacrylamide gel electrophoresis it was dissociated into a single fragment with a molecular mass of 39 kDa. In contrast, fresh lymphocyte enzyme extract showed a major band with a molecular mass of 75 kDa and a minor band of 39 kDa. Fresh liver enzyme was inhibited by S-adenosylmethionine while the purified enzyme from human cadaver liver was not inhibited. These observations suggest that human methylenetetrahydrofolate reductase is composed of two identical subunits of 75 kDa each but is cleaved into a major single band due to autolysis in cadaver liver. The purified cadaver enzyme was a FAD-specific protein. The pH optimum was 6.6 for methylenetetrahydrofolate-NADPH oxidoreductase, 6.5 for methyltetrahydrofolate-menadione oxidoreductase, and 7.2 for NADP-menadione oxidoreductase. The Km values of human liver methylenetetrahydrofolate reductase were 17 microns for NADPH and 38 microns for methyltetrahydrofolate in the reduction of menadione, and 12 microns for NADPH in the reduction of methylenetetrahydrofolate.  相似文献   

13.
14.
Bile salt sulfotransferase, the enzyme responsible for the formation of bile salt sulfate esters, was purified extensively from normal human liver. The purification procedure included DEAE-Sephadex chromatography, taurocholate-agarose affinity chromatography, and preparative isoelectrofocusing. The final preparation had a specific activity of 18 nmol min-1 mg protein-1, representing a 760-fold purification from the cytosol fraction with a overall yield of 15%. The human enzyme has a Mr of 67,000 and a pI of 5.2. DEAE-Sephadex chromatography of the cytosol fraction revealed only a single species of activity. The limiting Km for the sulfuryl donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), is 0.7 microM. The limiting Km for the sulfuryl acceptor, glycolithocholate (GLC), is 2 microM. Reciprocal plots were intersecting. Product inhibition studies established that adenosine 3',5'-diphosphate (PAP) was competitive with PAPS (Ki = 0.2 microM) and noncompetitive with respect to GLC. GLC sulfate was competitive with GLC (Ki = 2.2 microM) and noncompetitive with respect to PAPS. Also, 3-ketolithocholate, a dead-end inhibitor, was competitive with GLC (Ki = 0.6 microM) and noncompetitive with respect to PAPS. Iso-PAP (the 2' isomer of PAP) was competitive with PAPS (Ki = 0.3 microM) and noncompetitive with GLC. The cumulative results of the steady-state kinetics experiments point to a random mechanism for the binding of substrates and release of products. The purified enzyme displays no activity toward estrone, testosterone, or phenol. Among the reactive substrates tested, the Vmax/Km values are in the order GLC greater than 3-beta OH-5-cholenic acid greater than glycochenodeoxycholate greater than glycocholate. p-Chloromercuribenzoate inactivated the enzyme. Either PAPS or GLC protected against inactivation, suggesting the presence of a sulfhydryl group at the active site.  相似文献   

15.
Acid alpha-glucosidase [EC 3.2.1.3] was purified from pig liver by a procedure including Sephadex G-100 affinity chromatography. Electrophoresis on SDS-polyacrylamide gel of the purified enzyme indicated the presence of two components with molecular weights of 73K and 64K. The two components of the enzyme were completely separated, in reasonable yield, by chromatography on a DEAE-5PW column. Both components catalyzed the hydrolysis of the alpha-1,4 and alpha-1,6 linkages of glycogen, maltose, isomaltose, dextrin, and a synthetic glucoside at acid pH. The pH optima of both components were 4.3 for maltase and glucoamylase, and 4.8 for isomaltase and dextrinase. But as to the activity on 4MU-alpha-Glc, the pH optimum of the larger component was 4.8 and that of the smaller component 5.3. The Km values of both components for 4MU-alpha-Glc, maltose, glycogen, isomaltose, and dextrin were 1.0 X 10(-4) M, 9.1 X 10(-3) M, 16.7 mg/ml, 6.7 X 10(-2) M, and 12.5 mg/ml, respectively. Erythritol, Tris, and turanose inhibited the two components competitively. The Ki values of the larger component were 5.0 X 10(-2) M, 13.3 X 10(-3) M, and 3.2 X 10(-3) M, and those of the smaller component were 2.5 X 10(-2) M, 6.1 X 10(-3) M, and 4.7 X 10(-3) M, for erythritol, Tris, and turanose, respectively.  相似文献   

16.
The esterase activity of guinea-pig serum was investigated. A 3-fold purification was achieved by removing the serum albumin by Blue Sepharose CL-6B affinity chromatography. The partially purified enzyme preparation had carboxylesterase and cholinesterase activities of 1.0 and 0.22 mumol of substrate/min per mg of protein respectively. The esterases were labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated electrophoretically on sodium dodecyl sulphate/polyacrylamide gels. Two main labelled bands were detected: band I had Mr 80 000 and bound 18-19 pmol of [3H]DiPF/mg of protein, and band II had Mr 58 000 and bound 7 pmol of [3H]DiPF/mg of protein. Bis-p-nitrophenyl phosphate (a selective inhibitor of carboxylesterase) inhibited most of the labelling of bands I and II. The residual labelling (8%) of band I but not band II (4%) was removed by preincubation of partially purified enzyme preparation with neostigmine (a selective inhibitor of cholinesterase). Paraoxon totally prevented the [3H]DiPF labelling of the partially purified enzyme preparation. Isoelectrofocusing of [3H]DiPF-labelled and uninhibited partially purified enzyme preparation revealed that there were at least two separate carboxylesterases, which had pI3.9 and pI6.2, a cholinesterase enzyme (pI4.3) and an unidentified protein that reacts with [3H]DiPF and has a pI5.0. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these enzymes showed that the carboxylesterase enzymes at pI3.9 and pI6.2 corresponded to the 80 000-Mr subunit (band I) and 58 000-Mr subunit (band II). The cholinesterase enzyme was also composed of 80 000-Mr subunits (i.e. the residual labelling in band I after bis-p-nitrophenyl phosphate treatment). The unidentified protein at pI5.0 corresponded to the residual labelling in band II (Mr 58 000), which was insensitive to neostigmine and bis-p-nitrophenyl phosphate. These studies show that the carboxylesterase activity of guinea-pig serum is the result of at least two separate and distinct enzymes.  相似文献   

17.
Two forms of glutathione S-aryltransferase were purified from rat liver. The only differences noted between the two forms were in the chromatographic and electrophoretic properties, which permitted the separation of the two species. The molecular weights of the enzyme and its subunits were estimated as about 50000 and 23000 respectively. The steady-state kinetics did no follow Michaelis-Menten kinetics when one substrate concentration was kept constant while the second substrate concentration was varied. Several S-substituted GSH derivatives were tested as inhibitors of the enzymic reaction. The enzyme was inactivated by thiol-group reagents.  相似文献   

18.
Two isozymes of horse liver aldehyde dehydrogenase (aldehyde, NAD oxidoreductase (EC 1.2.1.3)), F1 and F2, have been purified to homogeneity using salt fractionation followed by ion exchange and gel filtration chromatography. The specific activities of the two isozymes in a pH 9.0 system with propionaldehyde as substrate were approximately 0.35 and 1.0 mumol of NADH/min/mg of protein for the F1 and F2 isozymes, respectively. The multiporosity polyacrylamide gel electrophoresis molecular weights of the F1 and F2 isozymes were approximately 230,000 and 240,000 respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave subunit molecular weight estimates of 52,000 and 53,000 for the F1 and F2 isozymes, respectively. The amino acid compositions of the two isozymes were found to be similar; the ionizable amino acid contents being consistent with the electrophoretic and chromatographic behavior of the two isozymes. Both isozymes exhibited a broad aldehyde specificity, oxidizing a wide variety of aliphatic and aromatic aldehydes and utilized NAD as coenzyme, but at approximately 300-fold higher coenzyme concentration could use NADP. The F1 isozyme exhibited a very low Km for NAD (3 muM) and a higher Km for acetaldehyde (70 muM), while the F2 isozyme was found to have a higher Km for NAD (30 muM) and a low Km for acetaldehyde (0.2 muM). The two isozymes showed similar chloral hydrate and p-chloromercuribenzoate inhibition characteristics, but the F1 isozyme was found to be several orders of magnittude more sensitive to disulfiram, a physiological inhibitor of acetaldehyde oxidation. Based on its disulfiram inhibition characteristics, it has been suggested that the F1 isozyme may be the primary enzyme for oxidizing the acetyldehyde produced during ethanol oxidation in vivo.  相似文献   

19.
beta-N-Acetylhexosaminidase I2 was purified from human liver by a combination of concanavalin A chromatography, DEAE-cellulose chromatography, gel filtration and affinity chromatography on 2-acetamido-N-(6-aminohexanoyl)-2-deoxy-beta-D-glucopyranosylamine coupled to CNBr-activated Sepharose 4B. Its specific activity was 130 mumol/min per mg of protein compared with values of 150 and 320 mumol/min/mg of protein for beta-N-acetylhexosaminidases A and B purified from the same tissue. Km values for I2, A and B were 1.0 mM, 0.8 mM and 0.74 mM respectively. On gradient gel electrophoresis under non-denaturing conditions, hexosaminidase I2 behaved similarly to A and appeared to have an Mr between 100 000 and 110 000. beta-N-Acetylhexosaminidase I2 was resolved into two major polypeptides, of Mr 56 000 and 29 000, on SDS/polyacrylamide-gel electrophoresis under denaturing conditions. Immunoblotting with anti-(hexosaminidase alpha-subunit) serum confirmed that the 56 000-Mr component was the alpha-subunit and anti-(hexosaminidase B) serum reacted with the 29 000 Mr component. beta-N-Acetylhexosaminidase I2 more closely resembles form A than B, but the features of its structure that allow it to be separated from A on the basis of net charge have not yet been found.  相似文献   

20.
Two recombinant human granulocyte colony-stimulating factor (rhG-CSF) isoforms were isolated from the medium conditioned by an engineered Chinese hamster ovary (CHO) cell line. The two rhG-CSFs were characterized and were found to differ in the carbohydrate structure attached to Thr-133. The glycoform, referred to as Peak 1, contains the O-linked glycan Neu5Ac(alpha 2-3)Gal(beta 1-3)GalNAc; the Peak 2 glycoform contains the O-linked glycan Neu5Ac(alpha 2-3)Gal(beta 1-3)[Neu5Ac(alpha 2-6)]GalNAc. The two glycoforms displayed a similar biological activity in cultures of a mouse 32D C13 cell line and human bone-marrow myelo-monocytic progenitor cells (CFU-GM). In the latter test both glycoforms displayed a higher activity than nonglycosylated rMet-hG-CSF from Escherichia coli. The pharmacokinetic profile and activity of the two rhG-CSF glycoforms and of a mixture of them (Pool) were investigated in mice treated with a single injection of rhG-CSF at the doses of 125 micrograms and 250 micrograms/kg, given via the intravenous (i.v.) and the subcutaneous (s.c.) route, respectively. The plasma concentration profiles obtained were similar for all three substances and did not show any relevant differences in absorption or elimination. The pharmacokinetic parameters indicate that the three substances have similar area under the curve (AUCs), volumes of distribution, and terminal half-life. Furthermore, our data indicate a high bioavailability of the two different glycoforms of rhG-CSF when given to mice via the s.c. route either singularly or as a mixture. Detectable levels of rhG-CSF persisted for more than 8 h in the i.v. and more than 24 h in the s.c. route of administration. All three substances induced early neutrophilia in mice. All rhG-CSF-treated mice developed a two-four-fold rise in neutrophil counts as early as 4 h after the intravenous and 2 h after the subcutaneous injection. Relatively high levels of neutrophils were maintained for at least 8 and 24 h after i.v. and s.c. administration, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号