首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of branched-chain amino acids in threonine-dehydratase deficient mutants of Corynebacterium glutamicum is dependent on the presence of relatively high (>1 mM) intracellular concentrations of isoleucine, valine or leucine. This indicates that the respective uptake-system is induced by its substrate, i.e. branched-chain amino acids, at the internal side. This unusual regulation presumably is the reason for the failure to obtain mutants deficient in isoleucine uptake by use of a selection scheme which starts from isoleucine auxotroph mutants. The physiological meaning of this regulation is discussed with respect to isoleucine efflux and the cyclic retention hypothesis.Abbreviations amp ampicillin - dw dry weight - Km kanamycin - kb kilobase(s) - NMG N-methyl-N-nitro-N-nitrosoguanidine - ®, resistant resistance  相似文献   

2.
Transmembrane threonine fluxes (i.e., uptake, diffusion, and carrier-mediated excretion) all contribut-ing to threonine production by a recombinant strain of Corynebacterium glutamicum, were analyzed and quantitated. A threonine-uptake carrier that transports threonine in symport with sodium ions was identified. Under production conditions (i.e., when internal threonine is high), this uptake system catalyzed predominantly threonine/threonine exchange. Threonine export via the uptake system was excluded. Threonine efflux from the cells was shown to comprise both carrier-mediated excretion and passive diffusion. The latter process was analyzed after inhibition of all carrier-mediated fluxes. Threonine diffusion was found to proceed with a first-order rate constant of 0.003 min–1 or 0.004 μl min–1 (mg dry wt.)–1, which corresponds to a permeability of 8 × 10–10 cm s–1. According to this permeability, less than 10% of the efflux observed under optimal conditions takes place via diffusion, and more than 90% must result from the activity of the excretion carrier. In addition, the excretion carrier was identified by (1) inhibition of its activity by amino acid modifying reagents and (2) its dependence on metabolic energy in the form of the membrane potential. Activity of the excretion system depended on the membrane potential, but not on the presence of sodium ions. Threonine export in antiport against protons is proposed. Received: 25 August 1995 / Accepted: 18 October 1995  相似文献   

3.
By complementation analysis of an isoleucine-uptake-deficient Escherichia coli strain, it was shown that a 1.6-kb HindIII-StuI fragment of Corynebacterium glutamicum ATCC 13032, located downstream of the aecD gene, encodes an isoleucine uptake system. Sequence analysis revealed that the complementing fragment carried an open reading frame, termed brnQ, that encodes a protein with sequence similarities to branched-chain amino acid carriers of gram-positive and gram-negative bacteria. The brnQ gene specifies a predominantly hydrophobic protein of 426 amino acid residues with a calculated molecular mass of 44.9 kDa. A topology prediction by neural network computer analysis suggests the existence of 12 hydrophobic segments that most probably form transmembrane α-helices. A C. glutamicum mutant strain harboring a defined deletion of brnQ in the chromosome showed a considerably lower isoleucine uptake rate of 0.04 nmol min–1 mg (dry mass)–1 as compared to the wild-type strain rate of 1.2 nmol min–1 mg (dry mass)–1. Overexpression of brnQ by means of a tac promotor resulted in an elevated uptake rate for isoleucine of 11.3 nmol min–1 mg (dry mass)–1. Evidently, the brnQ gene encodes the only transport system in C. glutamicum directing isoleucine uptake. Received: 16 October 1997 / Accepted: 27 November 1997  相似文献   

4.
Corynebacterium glutamicum effectively secretes L-glutamate when growing under biotin limitation. The secretion of glutamate was studied with respect to kinetic and energetic parameters: rate of glutamate uptake and efflux, specificity of transport, dependence of efflux on the energy state of the cell, concentration gradient of glutamate and ions, and membrane potential. By comparing these parameters when measured in biotin-limited, i.e. producer cells, and biotin-supplemented, i.e. non-producer cells, respectively, the following conclusions could be drawn: 1. The efflux of L-glutamate in C. glutamicum cannot be explained by passive permeation of this amino acid through the plasma membrane, as it has been assumed in the generally accepted model of glutamate secretion in biotin-limited cells. 2. It is unlikely that the efflux of glutamate occurs via an inversion of the glutamate uptake system. 3. Based on our results concerning the specificity and the kinetics of glutamate transport as well as the observed regulation phenomena, we conclude that secretion of glutamate in C. glutamicum occurs by a special efflux carrier system.Abbreviations dw dry weight - OD optical density - TPP tetraphenyl phosphonium bromide  相似文献   

5.
Molecular access to amino acid excretion by Corynebacterium glutamicum and Escherichia coli led to the identification of structurally novel carriers and novel carrier functions. The exporters LysE, RhtB, ThrE and BrnFE each represent the protoype of new transporter families, which are in part distributed throughout all of the kingdoms of life. LysE of C. glutamicum catalytes the export of basic amino acids. The expression of the carrier gene is regulated by the cell-internal concentration of basic amino acids. This serves, for example, to maintain homoeostasis if an excess of l-lysine or l-arginine inside the cell should arise during growth on complex media. RhtB is one of five paralogous systems in E. coli, of which at least two are relevant for l-threonine production. A third system is relevant for l-cysteine production. It is speculated that the physiological function of these paralogues is related to quorum sensing. ThrE of C. glutamicum exports l-threonine and l-serine. However, a ThrE domain with a putative hydrolytic function points to an as yet unknown role of this exporter. BrnFE in C. glutamicum is a two-component permease exporting branched-chained amino acids from the cell, and an orthologue in B. subtilis exports 4-azaleucine.  相似文献   

6.

Aims

To increase the l ‐isoleucine production in Corynebacterium glutamicum by overexpressing the global regulator Lrp and the two‐component export system BrnFE.

Methods and Results

The brnFE operon and the lrp gene were cloned into the shuttle vector pDXW‐8 individually or in combination. The constructed plasmids were transformed into an l ‐isoleucine‐producing strain C. glutamicum JHI3‐156, and the l ‐isoleucine production in these different strains was analysed and compared. More l ‐isoleucine was produced when only Lrp was expressed than when only BrnFE was expressed. Significant increase in l ‐isoleucine production was observed when Lrp and BrnFE were expressed in combination. Compared to the control strain, l ‐isoleucine production in JHI3‐156/pDXW‐8‐lrpbrnFE increased 63% in flask cultivation, and the specific yield of l ‐isoleucine increased 72% in fed‐batch fermentation.

Conclusions

Both Lrp and BrnFE are important to enhance the l ‐isoleucine production in C. glutamicum.

Significance and Impact of the Study

The results provide useful information to enhance l ‐isoleucine or other branched‐chain amino acid production in C. glutamicum.  相似文献   

7.
8.

Background  

The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum.  相似文献   

9.
Potassium accumulation is an essential aspect of bacterial response to diverse stress situations; consequently its uptake plays a pivotal role. Here, we show that the Gram-positive soil bacterium Corynebacterium glutamicum which is employed for the large-scale industrial production of amino acids requires potassium under conditions of ionic and non-ionic osmotic stress. Besides the accumulation of high concentrations of potassium contributing significantly to the osmotic potential of the cytoplasm, we demonstrate that glutamate is not the counter ion for potassium under these conditions. Interestingly, potassium is required for the activation of osmotic stress-dependent expression of the genes betP and proP. The Kup-type potassium transport system which is present in C. glutamicum in addition to the potassium channel CglK does not contribute to potassium uptake at conditions of hyperosmotic stress. Furthermore, we established a secondary carrier of the KtrAB type from C. jeikeium in C. glutamicum thus providing an experimental comparison of channel- and carrier-mediated potassium uptake under osmotic stress. While at low potassium availability, the presence of the KtrAB transporter improves both potassium accumulation and growth of C. glutamicum upon osmotic stress, at proper potassium supply, the channel CglK is sufficient.  相似文献   

10.
Whole cells of Corynebacterium glutamicum were loaded with high cytoplasmic l-isoleucine concentrations, and isoleucine excretion from these cells was studied in terms of mechanism and regulation. The transmembrane isoleucine flux could be differentiated into carrier-mediated uptake, carrier-mediated excretion, and diffusion. After discrimination from the other transmembrane solute movements, the outward-directed flux, which was due to the activity of the isoleucine excretion carrier, was characterized with respect to its energy dependence and its regulation at the level of expression. Isoleucine excretion was shown to function as a secondary transport process, driven by the membrane potential and coupled to the movement of protons, presumably with a stoichiometry of 2:1 (H(sup+)/isoleucine). Of a variety of putative transport substrates, only leucine was able to compete for isoleucine at the cis (cytosolic) side of the export carrier. Cytoplasmic isoleucine concentrations higher than 20 mM induce the activity of the isoleucine excretion system. This effect is specific for isoleucine and is inhibited by the presence of chloramphenicol. Apart from leucine, other amino acids and related amino acid analogs are not able to induce isoleucine excretion. The complex pattern of regulation of the isoleucine excretion system at the level of activity and expression is shown to be related to the pattern of regulation of the isoleucine uptake system in C. glutamicum in terms of physiological significance.  相似文献   

11.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   

12.
Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway. This study is dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

13.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

14.
Monensin and brefeldin A (BFA), inhibitors of Golgi-mediated protein secretion, rapidly perturb the transport catalytic activity of specific plasma membrane-associated efflux carriers for indole-3-acetic acid (IAA) and inhibit polar transport of IAA. To determine if these responses result solely from perturbation of the efflux carrier or whether specific auxin uptake carrier function is also affected, the influence of BFA on the cellular transport of a range of auxins with contrasting affinities for specific auxin uptake and efflux carriers was investigated in zucchini (Cucurbita pepo L.) hypocotyl tissue. In-flight addition of BFA (3 · 10−5 mol · dm−3) caused a rapid (lag < 10 min) and substantial (fourfold) increase in the rate of [1-14C]IAA net uptake by zucchini hypocotyl tissue. In the presence of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA; 3 · 10−6 mol · dm−3), BFA slightly reduced the rate of [1-14C]IAA net uptake. Stimulation of [1-14C]IAA net uptake by BFA was concentration-dependent. In the absence of BFA, net uptake of [1-14C]IAA exhibited the characteristic biphasic response to increasing concentrations of competing cold IAA but in the presence of BFA, [1-14C]IAA uptake decreased smoothly with increase in concentration of competing unlabelled IAA, indicating a loss of auxin efflux carrier activity but retention of functional uptake carriers. The half-time for mediated efflux of [1-14C]IAA from preloaded zucchini tissue was substantially increased by BFA (t1/2 = 51 min, controls; 107 min, BFA-treated). Treatment with BFA and/or NPA did not significantly affect the net uptake by, or efflux from, zucchini tissue of [1-14C]2,4-dichlorophenoxyacetic acid ([1-14C]2,4-D), a substrate for the auxin uptake carrier but not the auxin efflux carrier. Uptake of [1-14C]2,4-D declined smoothly with increasing concentrations of competing unlabelled IAA whether or not BFA was included in the uptake medium, confirming the failure of BFA to perturb auxin uptake carrier function. Transport of 1-[4-3H]naphthaleneacetic acid (1-NAA) exhibited little response to BFA or NPA, confirming that it is only a weakly transported substrate for the efflux carrier in zucchini cells. Received: 12 November 1997 / Accepted: 27 January 1998  相似文献   

15.
Corynebacterium glutamicum is equipped with abundant membrane transporters to adapt to a changing environment. Many amino acid transporters have been identified in C. glutamicum, but histidine uptake has not been investigated in detail. Here, we identified the aromatic amino acid transporter encoded by aroP as a histidine transporter in C. glutamicum by a combination of the growth and histidine uptake features. Characterization of histidine uptake showed that AroP has a moderate affinity for histidine, with a Km value of 11.40 ± 2.03 μM, and histidine uptake by AroP is competitively inhibited by the aromatic amino acids. Among the four substrates, AroP exhibits a stronger preference for tryptophan than for tyrosine, phenylalanine, and histidine. Homology structure modeling and molecular docking were performed to predict the substrate binding modes and conformational changes during substrate transport. These results suggested that tryptophan is best accommodated in the binding pocket due to shape compatibility, strong hydrophobic interactions, and the lowest binding energy, which is consistent with the observed substrate preference of AroP. Furthermore, the missense mutations of the putative substrate binding sites verified that Ser24, Ala28, and Gly29 play crucial roles in substrate binding and are highly conserved in the Gram-positive bacteria. Finally, the expression of aroP is not significantly affected by extracellular histidine or aromatic amino acids, indicating that the physiological role of AroP may be correlated with the increased fitness of C. glutamicum to assimilate extracellular amino acid for avoiding the high energy cost of amino acid biosynthesis.  相似文献   

16.
17.
The efflux of isoleucine in whole cells of Corynebacterium glutamicum was studied. The different amino acid fluxes across the plasma membrane were functionally discriminated into passive diffusion, carrier-mediated excretion, and carrier-mediated uptake. Detailed kinetic analysis was made possible by controlled variation of internal isoleucine from low concentrations to 100 mM by feeding with mixtures of isoleucine-containing peptides. Isoleucine diffusion was experimentally separated and proceeded with a first-order rate constant of 0.083 min-1 or 0.13 microliters.min-1.mg (dry mass)-1, which corresponds to a permeability of 2 x 10(-8) cm.s-1. Uptake of isoleucine was constant at a rate of 1.1 nmol.min-1.mg (dry mass)-1. Carrier-mediated isoleucine excretion was zero below a threshold of 8 mM cytosolic isoleucine. Above this level, a Michaelis-Menten-type kinetics was observed, with a Km of 21 mM (13 mM plus 8 mM threshold value) and a Vmax of 14.5 nmol.min-1.mg (dry mass)-1. The activity of the isoleucine excretion carrier depended on the presence of a membrane potential. Excretion was specific for L-isoleucine (and presumably L-leucine) and could be inhibited by SH reagents.  相似文献   

18.
The hom-1-thrB operon encodes homoserine dehydrogenase resistant to feedback inhibition by L-threonine and homoserine kinase. Stable expression of this operon has not yet been attained in different Corynebacterium glutamicum strains. We studied the use of chromosomal integration and of a low-copy-number vector for moderate expression of the hom-1-thrB operon to enable an analysis of the physiological consequences of its expression in C. glutamicum. Strains carrying one, two, or three copies of hom-1-thrB were obtained. They showed proportionally increased enzyme activity of feedback-resistant homoserine dehydrogenase and of homoserine kinase. This phenotype was stably maintained in all recombinants for more than 70 generations. In a lysine-producing C. glutamicum strain which does not produce any threonine, expression of one copy of hom-1-thrB resulted in the secretion of 39 mM threonine. Additional copies resulted in a higher, although not proportional, accumulation of threonine (up to 69 mM). This indicates further limitations of threonine production. As the copy number of hom-1-thrB increased, increasing amounts of homoserine (up to 23 mM) and isoleucine (up to 34 mM) were secreted. Determination of the cytosolic concentration of the respective amino acids revealed an increase of intracellular threonine from 9 to 100 mM and of intracellular homoserine from 4 to 74 mM as the copy number of hom-1-thrB increased. These results suggest that threonine production with C. glutamicum is limited by the efflux system for this amino acid. Furthermore, the results show the successful use of moderate and stable hom-1-thrB expression for directing the carbon flux from aspartate to threonine.  相似文献   

19.
In Bacteria, the pathways of polyamine biosynthesis start with the amino acids l-lysine, l-ornithine, l-arginine, or l-aspartic acid. Some of these polyamines are of special interest due to their use in the production of engineering plastics (e.g., polyamides) or as curing agents in polymer applications. At present, the polyamines for industrial use are mainly synthesized on chemical routes. However, since a commercial market for polyamines as well as an industry for the fermentative production of amino acid exist, and since bacterial strains overproducing the polyamine precursors l-lysine, l-ornithine, and l-arginine are known, it was envisioned to engineer these amino acid-producing strains for polyamine production. Only recently, researchers have investigated the potential of amino acid-producing strains of Corynebacterium glutamicum and Escherichia coli for polyamine production. This mini-review illustrates the current knowledge of polyamine metabolism in Bacteria, including anabolism, catabolism, uptake, and excretion. The recent advances in engineering the industrial model bacteria C. glutamicum and E. coli for efficient production of the most promising polyamines, putrescine (1,4-diaminobutane), and cadaverine (1,5-diaminopentane), are discussed in more detail.  相似文献   

20.
Based on sequence similarity, the mscCG gene product of Corynebacterium glutamicum belongs to the family of MscS-type mechanosensitive channels. In order to investigate the physiological significance of MscCG in response to osmotic shifts in detail, we studied its properties using both patch-clamp techniques and betaine efflux kinetics. After heterologous expression in an Escherichiacoli strain devoid of mechanosensitive channels, in patch-clamp analysis of giant E. coli spheroplasts MscCG showed the typical pressure dependent gating behavior of a stretch-activated channel with a current/voltage dependence indicating a strongly rectifying behavior. Apart from that, MscCG is characterized by significant functional differences with respect to conductance, ion selectivity and desensitation behavior as compared to MscS from E. coli. Deletion and complementation studies in C. glutamicum showed a significant contribution of MscCG to betaine efflux in response to hypoosmotic conditions. A detailed analysis of concomitant betaine uptake (by the betaine transporter BetP) and efflux (by MscCG) under hyperosmotic conditions indicates that MscCG may act in osmoregulation in C. glutamicum by fine-tuning the steady state concentration of compatible solutes in the cytoplasm which are accumulated in response to hyperosmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号