首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全细胞生物传感器是一种以微生物全细胞为敏感元件,可以快速感应环境中的毒性物质及污染物的装置。因其具有响应快、体积小、成本低、可实现原位监测等优势,在环境监测、药品研发、食品工业等领域显示出巨大潜力。综述了全细胞生物传感器的原理、分类及其在环境污染物监测领域的应用进展等,并对其未来的发展趋势进行了展望,以期为全细胞生物传感器的开发与利用提供参考。  相似文献   

2.
合成生物学细胞传感技术为快速、现场检测食品污染物提供了一种新型替代方法。由于细胞内环境相对稳定,合成生物学细胞传感器有较强的抗干扰能力;由于细胞能够通过自我复制而实现增殖,细胞传感器在生产上具有简单、廉价、快速的特点,因此在食品安全快速检测中具有良好的应用前景。本文综述了合成生物学细胞传感器核心元件的组成、构建方法和类型,介绍了多功能细胞传感器的合成生物学基因回路,列举了细胞传感器在食品安全快速检测中的商业化应用前景,并阐述了细胞传感器在食品安全快速检测中的挑战和发展趋势。  相似文献   

3.
Novel cyanobacterial biosensor for detection of herbicides   总被引:4,自引:0,他引:4  
The aim of this work was to generate a cyanobacterial biosensor that could be used to detect herbicides and other environmental pollutants. A representative freshwater cyanobacterium, Synechocystis sp. strain PCC6803, was chromosomally marked with the luciferase gene luc (from the firefly Photinus pyralis) to create a novel bioluminescent cyanobacterial strain. Successful expression of the luc gene during growth of Synechocystis sp. strain PCC6803 cultures was characterized by measuring optical density and bioluminescence. Bioluminescence was optimized with regard to uptake of the luciferase substrate, luciferin, and the physiology of the cyanobacterium. Bioassays demonstrated that a novel luminescent cyanobacterial biosensor has been developed which responded to a range of compounds including different herbicide types and other toxins. This biosensor is expected to provide new opportunities for the rapid screening of environmental samples or for the investigation of potential environmental damage.  相似文献   

4.
Huang  Tao  Tan  Hailing  Lu  Fangju  Chen  Gong  Wu  Zhenqiang 《Microbial cell factories》2017,16(1):1-10
Malonyl-coenzyme A (CoA) is an important biosynthetic precursor in vivo. Although Escherichia coli is a useful organism for biosynthetic applications, its malonyl-CoA level is too low. To identify strains with the best potential for enhanced malonyl-CoA production, we developed a whole-cell biosensor for rapidly reporting intracellular malonyl-CoA concentrations. The biosensor was successfully applied as a high-throughput screening tool for identifying targets at a genome-wide scale that could be critical for improving the malonyl-CoA biosynthesis in vivo. The mutant strains selected synthesized significantly higher titers of the type III polyketide triacetic acid lactone (TAL), phloroglucinol, and free fatty acids compared to the wild-type strain, using malonyl-CoA as a precursor. These results validated this novel whole-cell biosensor as a rapid and sensitive malonyl-CoA high-throughput screening tool. Further analysis of the mutant strains showed that the iron ion concentration is closely related to the intracellular malonyl-CoA biosynthesis.  相似文献   

5.
A highly sensitive and specific RNA biosensor was developed for the rapid detection of viable Escherichia coli as an indicator organism in water. The biosensor is coupled with protocols developed earlier for the extraction and amplification of mRNA molecules from E. coli [Anal. Biochem. 303 (2002) 186]. However, in contrast to earlier detection methods, the biosensor allows the rapid detection and quantification of E. coli mRNA in only 15-20 min. In addition, the biosensor is portable, inexpensive and very easy to use, which makes it an ideal detection system for field applications. Viable E. coli are identified and quantified via a 200 nt-long target sequence from mRNA (clpB) coding for a heat shock protein. For sample preparation, a heat shock is applied to the cells prior to disruption. Then, mRNA is extracted, purified and finally amplified using the isothermal amplification technique Nucleic acid sequence-based amplification (NASBA). The amplified RNA is then quantified with the biosensor. The biosensor is a membrane-based DNA/RNA hybridization system using liposome amplification. The various biosensor components such as DNA probe sequences and concentration, buffers, incubation times have been optimized, and using a synthetic target sequence, a detection limit of 5 fmol per sample was determined. An excellent correlation to a much more elaborate and expensive laboratory based detection system was demonstrated, which can detect as few as 40 E. coli cfu/ml. Finally, the assay was tested regarding its specificity; no false positive signals were obtained from other microorganisms or from nonviable E. coli cells.  相似文献   

6.
The development of a whole-cell fluorescence-based biosensor for nitrate is reported. The sensor is Escherichia coli transformed with a plasmid (pPNARGFP) in which the promoter and regulatory regions of the membrane-bound nitrate reductase narGHJI operon (Pnar) are fused to a gfp gene encoding green fluorescent protein (GFP). Pnar-gfp activity was measured at a range of nitrate concentrations using whole-cell GFP fluorescence. The bioassay conditions have been optimized so that the fluorescence intensity is proportional to the extracellular nitrate concentration. The developed bioassay has established that E. coli (pPNARGFP) can be used for the quantitative determination of nitrate in environmental waters without interference from other electron acceptors, e.g., nitrite, dimethyl sulfoxide, trimethylamine-N-oxide and fumerate, and azide, an inhibitor of redox-active proteins.  相似文献   

7.
A whole-cell biosensor was developed for the detection of gas toxicity using a recombinant bioluminescent Escherichia coli harboring a lac::luxCDABE fusion. Immobilization of the cells within LB agar has been done to maintain the activity of the microorganisms and to detect the toxicity of chemicals through the direct contact with gas. Benzene, known as a representative volatile organic compound, was chosen as a sample toxic gas to evaluate the performance of this biosensor based on the bioluminescent response. This biosensor showed a dose-dependent response, and was found to be reproducible. The immobilizing matrices of this biosensor were stored at 4 degrees C and were maintained for at least a month without any noticeable change in its activity. The optimal temperature for sensing was 37 degrees C. A small size of this sensor kit has been successfully fabricated, and found to be applicable as a disposable and portable biosensor to monitor the atmospheric environment of a workplace in which high concentrations of toxic gases could be discharged.  相似文献   

8.
A rapid qualitative test is proposed for bacterial respiratory type based on 24 h culturing of bacteria in liquid medium supplemented with a redox indicator: methylene blue or resazurin. Five reference bacterial strains with definite respiratory type as well as nine bacterial isolates from a laboratory digester for methane fermentation were used. Results obtained showed that both indicators can be used for distinction of strict aerobes from other bacterial representatives with definite respiration. In addition, the resazurin is able to differentiate strict anaerobes from microaerophiles and other anaerobes. The main advantages of the methylene blue is that it is a cheap, easily accessible dye, wide-used in microbiological practice and the results obtained with it are more stable over time. It was also noticed that the test with both indicators gave reliable results for the bacterial respiration only when an inoculum up to 48 h old was used.  相似文献   

9.
Novel Cyanobacterial Biosensor for Detection of Herbicides   总被引:2,自引:0,他引:2       下载免费PDF全文
The aim of this work was to generate a cyanobacterial biosensor that could be used to detect herbicides and other environmental pollutants. A representative freshwater cyanobacterium, Synechocystis sp. strain PCC6803, was chromosomally marked with the luciferase gene luc (from the firefly Photinus pyralis) to create a novel bioluminescent cyanobacterial strain. Successful expression of the luc gene during growth of Synechocystis sp. strain PCC6803 cultures was characterized by measuring optical density and bioluminescence. Bioluminescence was optimized with regard to uptake of the luciferase substrate, luciferin, and the physiology of the cyanobacterium. Bioassays demonstrated that a novel luminescent cyanobacterial biosensor has been developed which responded to a range of compounds including different herbicide types and other toxins. This biosensor is expected to provide new opportunities for the rapid screening of environmental samples or for the investigation of potential environmental damage.  相似文献   

10.
生物传感器在环境分析中的研究现状与前景   总被引:1,自引:0,他引:1  
在环境控制中,生物传感器作为广谱装置应用于废水或生化需氧量的检测,特异性地对农药、重金属、硝酸盐、亚硝酸盐、除草剂和次氮基乙酸等环境污染物进行检测。讨论了各类生物传感器(酶生物传感器、全细胞生物传感器、受本传感器和免疫传感器)在环境分析中的应用实例及其优缺点,并指出了急需解决的问题以阐明其应用趋势。  相似文献   

11.
A simple, sensitive, and rapid cell-free assay system was developed for detection of N-acyl homoserine lactone (AHL) autoinducers involved in bacterial quorum sensing (QS). The present approach improves upon previous whole-cell biosensor-based approaches in its utilization of a cell-free assay approach to conduct bioassays. The cell-free assay was derived from the AHL biosensor bacterium Agrobacterium tumefaciens NTL4(pCF218)(pCF372), allowing the expression of beta-galactosidase upon addition of exogenous AHLs. We have shown that beta-galactosidase expression is possible in cell-free solution [lysate from Agrobacterium tumefaciens NTL4(pCF218)(pCF372) culture]. Assay detection limits with the use of chromogenic substrate X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) ranged from approximately 100 nM to 300 nM depending on the specific AHL. Replacement (of X-Gal) with the luminescent substrate Beta-Glo increased sensitivity to AHLs by 10-fold. A major advantage of the cell-free assay system is elimination of time-consuming steps for biosensor cell culture conditioning, which are required prior to whole-cell bioassays. This significantly reduced assay times from greater than 24 h to less than 3 h, while maintaining high sensitivity. Assay lysate may be prepared in bulk and stored (-80 degrees C) over 6 months for future use. Finally, the present protocol may be adapted for use with other biosensor strains and be used in high-throughput AHL screening of bacteria or metagenomic libraries.  相似文献   

12.
A new bacterial biosensor for styrene has been developed and characterized. A translational fusion of the lacZ gene to the sty promoter of Pseudomonas sp. strain Y2 has been inserted into miniTn5. Transposition of the recombinant transposon to the chromosome of Pseudomonas sp. strain Y2 resulted in a whole-cell biosensor able to detect and degrade styrene. In this biosensor, the endogenous StyS/StyR system detects the presence of styrene and turns on the expression of the exogenous reporter gene from the transferred construction. Other compounds such as toluene, epoxystyrene, phenylacetaldehyde and 2-phenylethanol also induced expression of beta-galactosidase although quantitative differences in their effect are clearly detected. Non-inducing compounds affect differently the sensitivity to inducing compounds when present in a mixture.  相似文献   

13.
The ability of bacteria to sense their surroundings can be employed to measure the bioavailability and toxicity of pollutants. However, long-term maintenance of both viability and activity of the sensor bacteria is required for the development of cell-based devices for environmental monitoring. To meet these demands, various techniques to conserve such bacteria have been reported, including freeze drying, vacuum drying, continuous cultivation, and immobilisation in biocompatible polymers of organic or inorganic origin. Much effort has been invested in merging these bacterial preservation schemes with the construction of sensor cell arrays on platforms such as biochips or optic fibres, hopefully leading to effective miniaturised whole-cell biosensor systems. These approaches hold much promise for the future. Nevertheless, their eventual implementation in practical devices calls for significant enhancement of current knowledge on formulation of reporter microorganisms.  相似文献   

14.
生物传感器在环境分析中的研究现状与前景   总被引:3,自引:0,他引:3  
论述生物传感器的发展现状与前景。在环境控制中,生物传感器作为广谱装置应用于废水或生化需氧量的检测以及特异性地对农药、重金属、硝酸盐、亚硝酸盐、除草剂和次氮基乙酸等环境污染物进行检测。讨论了各类生物传感器(如酶生物传感器、全细胞生物传感器、受体传感器和免疫传感器)在环境分析中的应用实例及其优缺点,并指出了急需解决的问题以阐明其应用趋势,以期在这一跨学科领域进行更多的研究。  相似文献   

15.
A new, quick method, using the resazurin dye test as a bacterial respiration indicator, has been developed to assay the antibacterial activity of various substances used as disinfectants against bacterial biofilm growth on clinical devices. Resazurin was used to measure the presence of active biofilm bacteria, after adding disinfectant, in relation to a standard curve generated from inocula in suspension of the same organism used to grow the biofilm. The biofilm was quantified indirectly by measuring the fluorescent, water-soluble resorufin product produced when resazurin is reduced by reactions associated with respiration. Four products used as disinfectants and the biofilm growth of five bacterial species on carriers made of materials commonly found in clinical devices were studied. Under test conditions, chlorhexidine, NaOCl, ethanol, and Perasafe at concentrations of 0.2, 0.01, 350, and 0.16 mg/ml, respectively, all produced 5-log reductions in biofilm cell numbers on the three different carriers. The redox-driven test depends on bacterial catabolism, for which reason resazurin reduction produces an analytic signal of the bacterial activity in whole cells, and therefore could be used for determining disinfectant efficacy in an assay based on the metabolic activity of microorganisms grown as biofilm or in suspension.  相似文献   

16.
Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 10(6)-10(7) cells/mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS-induction in whole soil samples. Soil microcosms were spiked with a dilution-series of crude broth extract from the mitomycin C-producing streptomycete Streptomyces caespitosus. Biosensors extracted from these microcosms after 1 day of incubation at 30 degrees C were easily distinguished from extracts of non-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil.  相似文献   

17.
A new microdilution method has been developed for determining the minimum inhibitory concentration (MIC) of oil-based compounds. The redox dye resazurin was used to determine the MIC of a sample of the essential oil of Melaleuca alternifolia (tea tree) for a range of Gram-positive and -negative bacteria. Use of 0·15% (w/v) agar as a stabilizer overcame the problem of adequate contact between the oil and the test bacteria and obviated the need to employ a chemical emulsifier. A rapid version of the assay was also developed for use as a screening method. A comparison of visual and photometric reading of the microtitre plates showed that results could be assessed without instrumentation; moreover, if the rapid assay format was used, rigorous asepsis was not necessary. Accuracy of the resazurin method was confirmed by plate counting from microwells and MIC values were compared with results obtained using an agar dilution assay. The MIC results obtained by the resazurin method were slightly lower than those obtained by agar dilution.  相似文献   

18.
AIMS: The aim of the current study was to test whether resazurin changed colour when incubated with a range of organic chemicals used as growth substrates in bioremediation studies and to determine whether resazurin was more effective in estimating microbial growth than turbidity alone (i.e. no resazurin) or use of the dye, methylene blue. METHODS AND RESULTS: Resazurin was incubated with a range of organic chemicals that were used as substrates in an MPN assay. Only 1,2-dichlorobenzene, 2,4-D, glycol sulphite and sulphinol reacted to generate false positives. Resazurin was also used to estimate micro-organisms in a series of bioremediation studies. CONCLUSION: The results showed that resazurin was more sensitive than methylene blue or turbidity alone as an indicator of microbial growth. SIGNIFICANCE AND IMPACT OF THE STUDY: The significance of the current study is that resazurin should be used in MPN assays for estimating contaminant-degrading micro-organisms instead of turbidity alone or other dyes such as methylene blue.  相似文献   

19.
A mast cell-based biosensor has been developed to enable the use of these cells in numerous applications including pharmaceutical screening, environmental monitoring, clinical diagnosis and homeland security. Rat basophilic leukemia (RBL) mast cells offer excellent potential for biosensor applications because they are robust and undergo a dramatic exocytotic response within minutes of antigen addition. To monitor mast cell activation, fluorescent dyes were loaded into the cells and used as indicators of alkalinization of secretory granules, calcium fluxes or generation of reactive oxygen species. These fluorescence assays efficiently measure activation of antigen-stimulated RBL mast cells, detecting the antigen with picomolar sensitivity. To demonstrate the utility of this mast cell-based biosensor for detection of microbial pathogens, an IgE chimeric protein was created by fusing the Fc region of the IgE antibody to CD14, a receptor for lipopolysaccharide. This chimeric protein has the capacity to bind to Escherichia coli and Listeria monocytogenes and also to IgE receptors on the mast cells, thereby stimulating a signaling response to bacteria. RBL mast cells labeled with the calcium indicator Fluo-4 are shown to be responsive to E. coli, only when sensitized with the chimeric protein, thus demonstrating a highly versatile biosensor for bacterial contamination.  相似文献   

20.
The resazurin assay utilising microtitre-plate, described by Drummond and Waigh in 2000, has been modified to achieve more accuracy in the determination of the minimum inhibitory concentration (MIC) values of natural products, including crude extracts, chromatographic fractions or purified compounds against various bacterial strains. This modified resazurin method is simple, sensitive, rapid, robust and reliable, and could be used successfully to assess antibacterial properties of natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号