首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The flavoprotein TrmFO methylates specifically the C5 carbon of the highly conserved uridine 54 in tRNAs. Contrary to most methyltransferases, the 1-carbon unit transferred by TrmFO derives from 5,10-methylenetetrahydrofolate and not from S-adenosyl-L-methionine. The enzyme also employs the FAD hydroquinone as a reducing agent of the C5 methylene U54-tRNA intermediate in vitro. By analogy with the catalytic mechanism of thymidylate synthase ThyA, a conserved cysteine located near the FAD isoalloxazine ring was proposed to act as a nucleophile during catalysis. Here, we mutated this residue (Cys-53 in Bacillus subtilis TrmFO) to alanine and investigated its functional role. Biophysical characterization of this variant demonstrated the major structural role of Cys-53 in maintaining both the integrity and plasticity of the flavin binding site. Unexpectedly, gel mobility shift assays showed that, like the wild-type enzyme, the inactive C53A variant was capable of forming a covalent complex with a 5-fluorouridine-containing mini-RNA. This result confirms the existence of a covalent intermediate during catalysis but rules out a nucleophilic role for Cys-53. To identify the actual nucleophile, two other strictly conserved cysteines (Cys-192 and Cys-226) that are relatively far from the active site were replaced with alanine, and a double mutant C53A/C226A was generated. Interestingly, only mutations that target Cys-226 impeded TrmFO from forming a covalent complex and methylating tRNA. Altogether, we propose a revised mechanism for the m(5)U54 modification catalyzed by TrmFO, where Cys-226 attacks the C6 atom of the uridine, and Cys-53 plays the role of the general base abstracting the C5 proton.  相似文献   

2.
Bovine beta-lactoglobulin (beta-lg) has been used extensively as a model for studying protein folding. One of the problems preventing clarification of the folding mechanism is the incomplete reversibility from the unfolded state, probably caused by the thiol-disulfide exchange between a free thiol at Cys-121 and two disulfide bonds. We constructed and expressed three beta-lg subtype A mutants in which Cys-121 was replaced by Ala, Ser, or Val (i.e. C121A, C121S, and C121V). We studied the reversibilities of these mutants from urea denaturation using circular dichroism, tryptophan fluorescence, reversed-phase and gel-filtration high performance liquid chromatographies, and SDS-PAGE. The folded structure of each mutant was similar to that of wild-type beta-lg. Urea-induced unfolding at pH 7.0 and 3.0 showed that although the C121S mutation notably decreases the stability, the destabilizing effects of the C121A and C121V mutations are less severe. For all of the mutants, complete refolding from the unfolded state in 8 M urea at both pH 7.0 and 3.0 was observed. Kinetics of the formation of the irreversibly unfolded species of wild-type beta-lg in 8 M urea at pH 7.0 indicated that, first, an intramolecular thiol-disulfide exchange occurs to produce a mixture of species with non-native disulfide bonds followed by the intermolecular thiol-disulfide exchange producing the oligomers. These results indicate that intramolecular and intermolecular thiol-disulfide exchange reactions cause the low reversibility of wild-type beta-lg especially at neutral pH and that the mutation of Cys-121 improves the reversibility, enabling us to study the folding of beta-lg more exactly under various conditions.  相似文献   

3.
4.
The role of the internal Cys-207 of sorghum NADP-malate dehydrogenase (NADP-MDH) in the activation of the enzyme has been investigated through the examination of the ability of this residue to form mixed disulphides with thioredoxin mutated at either of its two active-site cysteines. The h-type Chlamydomonas thioredoxin was used, because it has no additional cysteines in the primary sequence besides the active-site cysteines. Both thioredoxin mutants proved equally efficient in forming mixed disulphides with an NADP-MDH devoid of its N-terminal bridge either by truncation, or by mutation of its N-terminal cysteines. They were poorly efficient with the more compact WT oxidised NADP-MDH. Upon mutation of Cys-207, no mixed disulphide could be formed, showing that this cysteine is the only one, among the four internal cysteines, which can form mixed disulphides with thioredoxin. These experiments confirm that the opening of the N-terminal disulphide loosens the interaction between subunits, making Cys-207, located at the dimer contact area, more accessible.  相似文献   

5.
Directed mutagenesis of the gor gene from Escherichia coli encoding the flavoprotein glutathione reductase was used to convert the two cysteine residues that comprise its redox-active disulphide bridge to alanine (C42A) and serine (C47S) residues. A double mutant (C42AH439A) was also created in which His-439, the proton donor/acceptor in the glutathione-binding site, was additionally converted into an alanine residue. The C42A and C47S mutants were both unable to catalyse the reduction of glutathione by NADPH. The C42A mutant retained the transhydrogenase activity of the wild-type enzyme, whereas the C47S mutant was also inhibited in this reaction. These results support the view that in the catalytic mechanism of E. coli glutathione reductase, the thiolate form of Cys-42 acts as a nucleophile to initiate disulphide exchange with enzyme-bound glutathione and that the thiolate form of Cys-47 generates an essential charge-transfer complex with enzyme-bound FAD. Titration of the C42A and C42AH439A mutants indicated that the imidazole side-chain of His-439 lowered the pKa of the charge-transfer thiol (Cys-47) from 7.7 to 5.7, enhancing its ability to act as an anion at neutral pH. Several important differences between these mutants of E. coli glutathione reductase and similar mutants (or chemically modified forms) of other members of the flavoprotein disulphide oxidoreductase family were noted, but these could be explained in terms of the different redox chemistries of the enzymes concerned.  相似文献   

6.
Xiong H  Stanley BA  Pegg AE 《Biochemistry》1999,38(8):2462-2470
S-Adenosylmethionine decarboxylase is a pyruvate-dependent enzyme. The enzyme forms a Schiff base with substrate, S-adenosylmethionine, through the pyruvoyl moiety. This facilitates the release of CO2 from the substrate, which must then be protonated on the alpha carbon in order to permit hydrolysis of the Schiff base to release the product. The catalytic mechanism of human S-adenosylmethionine decarboxylase was investigated via mutagenic and kinetic approaches. The results of enzyme kinetic studies indicated that Cys-82 is a crucial residue for activity and this residue has a basic pKa. Iodoacetic acid inhibited wild-type enzyme activity in a time- and pH-dependent manner but did not affect the already reduced activity of mutant C82A. Reaction of this mutant with iodoacetic acid led to approximately one less mole of reagent being incorporated per mole of enzyme alphabeta dimer than with wild-type S-adenosylmethionine decarboxylase. Both wild-type and C82A mutant S-adenosylmethionine decarboxylases were inactivated by substrate-mediated transamination, but this reaction occurred much more frequently with C82A than with wild-type enzyme. A major proportion of the recombinant C82A mutant protein was in the transaminated form in which the pyruvoyl cofactor is converted into alanine. This suggests that incorrect protonation of the pyruvate, rather than the substrate, occurs much more readily when Cys-82 is altered. On the basis of these results, it was postulated that residue Cys-82 may be the proton donor of the decarboxylation reaction catalyzed by S-adenosylmethionine decarboxylase.  相似文献   

7.
The small envelope protein of hepatitis B virus is the major component of the viral coat and is also secreted from cells as a 20-nm subviral particle, even in the absence of other viral proteins. Such empty envelope particles are composed of approximately 100 copies of this polypeptide and host-derived lipids and are stabilized by extensive intermolecular disulfide cross-linking. To study the contribution of disulfide bonds to assembly and secretion of the viral envelope, single and multiple mutants involving all 14 cysteines in HepG2 and COS-7 cells were analyzed. Of the six cysteines located outside the region carrying the surface antigen, Cys-48, Cys-65, and Cys-69 were each found to be essential for secretion of 20-nm particles, whereas Cys-76, Cys-90, and Cys-221 were dispensable. By introduction of an additional cysteine substituting serine 58, the yield of secreted particles was increased. Of four mutants involving the eight cysteines located in the antigenic region, only the double mutant lacking Cys-121 and Cys-124 was secreted with wild-type efficiency. Secretion-competent envelope proteins were intracellularly retained by secretion-deficient cysteine mutants. According to alkylation studies, both intracellular and secreted envelope proteins contained free sulfhydryl groups. Disulfide-linked oligomers were studied by gel electrophoresis under nonreducing conditions.  相似文献   

8.
Mgm101 is a Rad52-type recombination protein of bacteriophage origin required for the repair and maintenance of mitochondrial DNA (mtDNA). It forms large oligomeric rings of ∼14-fold symmetry that catalyze the annealing of single-stranded DNAs in vitro. In this study, we investigated the structural elements that contribute to this distinctive higher order structural organization and examined its functional implications. A pair of vicinal cysteines, Cys-216 and Cys-217, was found to be essential for mtDNA maintenance. Mutations to the polar serine, the negatively charged aspartic and glutamic acids, and the hydrophobic amino acid alanine all destabilize mtDNA in vivo. The alanine mutants have an increased propensity of forming macroscopic filaments. In contrast, mutations to aspartic acid drastically destabilize the protein and result in unstructured aggregates with severely reduced DNA binding activity. Interestingly, the serine mutants partially disassemble the Mgm101 rings into smaller oligomers. In the case of the C216S mutant, a moderate increase in DNA binding activity was observed. By using small angle x-ray scattering analysis, we found that Mgm101 forms rings of ∼200 Å diameter in solution, consistent with the structure previously established by transmission electron microscopy. We also found that the C216A/C217A double mutant tends to form broken rings, which likely provide free ends for seeding the growth of the super-stable but functionally defective filaments. Taken together, our data underscore the importance of a delicately maintained ring structure critical for Mgm101 activity. We discuss a potential role of Cys-216 and Cys-217 in regulating Mgm101 function and the repair of damaged mtDNA under stress conditions.  相似文献   

9.
Dengue virus (DENV) nonstructural protein 1 (NS1) is a highly conserved 46-kDa protein that contains 2 glycosylation sites (Asn-130 and Asn-207) and 12 conserved cysteine (Cys) residues. Here, we performed site-directed mutagenesis to generate systematic mutants of viral strain TSV01. The results of the subsequent analysis showed that an alanine substitution at the second N-linked glycan Asn-207 in NS1 delayed viral RNA synthesis, reduced virus plaque size, and weakened the cytopathic effect. Three mutants at Cys sites (Cys-4, Cys-55, Cys-291) and a C-terminal deletion (ΔC) mutant significantly impaired RNA synthesis, and consequently abolished viral growth, whereas alanine mutations at Asn-130 and Glu-173 resulted in phenotypes that were similar to the wild-type (WT) virus. Further analysis showed that the Asn-207 mutation slightly delayed viral replication. These results suggest that the three conserved disulfide bonds and the second N-linked glycan in NS1 are required for DENV-2 replication.  相似文献   

10.
ABCG2 is an ATP binding cassette (ABC) half-transporter that plays a key role in multidrug resistance to chemotherapy. ABCG2 is believed to be a functional homodimer that has been proposed to be linked by disulfide bridges. We have investigated the structural and functional role of the only three cysteines predicted to be on the extracellular face of ABCG2. Upon mutation of Cys-592 or Cys-608 to alanine (C592A and C608A), ABCG2 migrated as a dimer in SDS-PAGE under non-reducing conditions; however, mutation of Cys-603 to Ala (C603A) caused the transporter to migrate as a single monomeric band. Despite this change, C603A displayed efficient membrane targeting and preserved transport function. Because the transporter migrated as a dimer in SDS-PAGE, when only Cys-603 was present (C592A-C608A), the data suggest that Cys-603 forms a symmetrical intermolecular disulfide bridge in the ABCG2 homodimer that is not essential for protein expression and function. In contrast to C603A, both C592A and C608A displayed impaired membrane targeting and function. Moreover, when only Cys-592 or Cys-608 were present (C592A/C603A and C603A/C608A), the transporter displayed impaired plasma membrane expression and function. The combined mutation (C592A/C608A) partially restored plasma membrane expression; however, although transport of mitoxantrone was almost normal, we observed impairment of BODIPY-prazosin transport. This supports the conclusion that Cys-592 and Cys-608 form an intramolecular disulfide bridge in ABCG2 that is critical for substrate specificity. Finally, mutation of all three cysteines simultaneously resulted in low expression and no measurable function. Altogether, our data are consistent with a scenario in which an inter- and an intramolecular disulfide bridge together are of fundamental importance for the structural and functional integrity of ABCG2.  相似文献   

11.
Native interleukin-2 (IL-2) contains three cysteines; two exist in a disulfide bridge (Cys-58 and Cys-105) and the third Cys-125 is a free sulfhydryl. In the presence of 6 M guanidine hydrochloride at alkaline pH, IL-2 is converted into three isomers. Each isomer represents one of the three possible disulfide-linked forms that can be generated from three cysteines. These three isomers were resolved on a C4 reverse-phase HPLC system. The identity of each of the three forms was determined by carboxymethylation of the free cysteines in each isomer with [3H]iodoacetic acid followed by determination of the labelled cysteines by tryptic peptide mapping. Tryptic peptide mapping of the more predominant of the two scrambled peaks showed it to be the Cys-105-S-S-Cys-125 linked form of IL-2. A Ser-125 construction of IL-2, which lacks a free cysteine, did not scramble under these conditions. These experiments demonstrate the utility of reverse-phase HPLC in studies of protein folding and disulfide bond structure.  相似文献   

12.
To understand the role of disulfide bridges in protein stability, the thermodynamic changes in the denaturation of two mutant human lysozymes lacking a disulfide bridge between Cys-77 and Cys-95 (C77A and C77/95A) were analyzed using differential scanning calorimetry (DSC). At pH 3.0 and 57 degrees C, the stabilities of both the C77A and C77/95A mutants were decreased about 4.6 kcal.mol-1 in Gibbs free energy change. Under the same conditions, the enthalpy changes (delta H) were 94.8 and 90.8 kcal.mol-1, respectively, which were smaller than that of the wild type (100.8 kcal.mol-1). The destabilization of the mutants was caused by enthalpic factors. Although X-ray crystallography indicated that the mutants preserve the wild-type tertiary structure, removal of the disulfide bridge increased the flexibility of the native state of the mutants. This was indicated both by an increase in the crystallographic thermal factors (B-factors) and by a decrease in the affinity of N-acetylglucosamine trimer [(NAG)3] observed using isothermal titration calorimetry (DTC) due to entropic effects. Thus, the effect of cross-linking on the stability of a protein is not solely explained by the entropy change in denaturation.  相似文献   

13.
14.
Gpm6a was identified as a stress-responsive gene in the hippocampal formation. This gene is down-regulated in the hippocampus of both socially and physically stressed animals, and this effect can be reversed by antidepressant treatment. Previously we showed that the stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. In the present work, mutational analysis was used to characterize the action of M6a at the molecular level. We show that four cysteines 162, 174, 192, and 202 within EC2 are functionally crucial sites. The presence of cysteines 162 and 202 is essential for the efficient cell surface expression of the M6a protein. In contrast, cysteines 174 and 192, which form a disulfide bridge as shown by biochemical analysis, are not required for the efficient surface expression of M6a. Their mutation to alanine does not interfere with the localization of M6a to filopodial protrusions in primary hippocampal neurons. The neurons expressing C174A and/or C192A mutants display decreased filopodia number. In non-permeabilized cells, these mutant proteins are not recognized by a function-blocking monoclonal antibody directed to M6a. Moreover, neurons in contact with axons expressing C174A/C192A mutant display significantly lower density of presynaptic clusters over their dendrites. Taken together, this study demonstrates that cysteines in the EC2 domain are critical for the role of M6a in filopodium outgrowth and synaptogenesis.  相似文献   

15.
Disulfide bonds of herpes simplex virus type 2 glycoprotein gB.   总被引:1,自引:1,他引:0       下载免费PDF全文
Glycoprotein B (gB) is the most highly conserved envelope glycoprotein of herpesviruses. The gB protein is required for virus infectivity and cell penetration. Recombinant forms of gB being used for the development of subunit vaccines are able to induce virus-neutralizing antibodies and protective efficacy in animal models. To gain structural information about the protein, we have determined the location of the disulfide bonds of a 696-amino-acid residue truncated, recombinant form of herpes simplex virus type 2 glycoprotein gB (HSV gB2t) produced by expression in Chinese hamster ovary cells. The purified protein, which contains virtually the entire extracellular domain of herpes simplex virus type 2 gB, was digested with trypsin under nonreducing conditions, and peptides were isolated by reversed-phase high-performance liquid chromatography (HPLC). The peptides were characterized by using mass spectrometry and amino acid sequence analysis. The conditions of cleavage (4 M urea, pH 7) induced partial carbamylation of the N termini of the peptides, and each disulfide peptide was found with two or three different HPLC retention times (peptides with and without carbamylation of either one or both N termini). The 10 cysteines of the molecule were found to be involved in disulfide bridges. These bonds were located between Cys-89 (C1) and Cys-548 (C8), Cys-106 (C2) and Cys-504 (C7), Cys-180 (C3) and Cys-244 (C4), Cys-337 (C5) and Cys-385 (C6), and Cys-571 (C9) and Cys-608 (C10). These disulfide bonds are anticipated to be similar in the corresponding gBs from other herpesviruses because the 10 cysteines listed above are always conserved in the corresponding protein sequences.  相似文献   

16.
Escherichia coli contains two thioredoxins, Trx1 and Trx2, and a thioredoxin-like protein, YbbN, which presents a strong homology in its N-terminal part with thioredoxin 1 and 2. YbbN, however, does not possess the canonical Cys-x-x-Cys active site of thioredoxins, but instead a Ser-x-x-Cys site. In addition to Cys-38, located in the SxxC site, it contains a second cysteine, Cys-63, close to Cys-38 in the 3D model. Cys-38 and Cys-63 undergo an oxidoreduction process, suggesting that YbbN functions with two redox cysteines. Accordingly, YbbN catalyzes the oxidation of reduced RNase and the isomerization of scrambled RNase. Moreover, upon oxidation, its oligomeric state changes from dimers to tetramers and higher oligomers. YbbN also possesses chaperone properties, promoting protein folding after urea denaturation and forming complexes with unfolded proteins. This is the first biochemical characterization of a member of the YbbN class of bacterial thioredoxin-like proteins, and in vivo experiments will allow to determine the importance of its redox and chaperone properties in the cellular physiology.  相似文献   

17.
Meinhold D  Beach M  Shao Y  Osuna R  Colón W 《Biochemistry》2006,45(32):9767-9777
Two crossed-linked variants of the homodimeric DNA binding protein factor for inversion stimulation (FIS) were created via engineering of single intermolecular disulfide bonds. The conservative S30C and the nonconservative V58C FIS independent mutations resulted in FIS crossed-linked at the A helix (C30-C30) and at the middle of the B helix (C58-C58). This study sought to investigate how the location of an intermolecular disulfide bond may determine the effect on stability and its propagation through the structure to preserve or alter the denaturation cooperativity of FIS. The oxidized and reduced S30C and V58C FIS exhibited a far-UV CD spectrum and DNA binding affinities that were similar to WT FIS, indicating no significant changes in secondary and tertiary structure. However, the reduced and oxidized forms of the mutants revealed significant differences in the stability and equilibrium denaturation mechanism between the two mutants. In the reduced state, S30C FIS had very little effect on FIS stability, whereas V58C FIS was 2-3 kcal/mol less stable than WT FIS. Interestingly, while both disulfide bonds significantly increased the resistance to urea- and guanidine hydrochloride (GuHCl)-induced denaturation, oxidized V58C FIS exhibited a three-state GuHCl-induced transition. In contrast, oxidized S30C FIS displayed a highly cooperative WT-like transition with both denaturants. The three-state denaturation mechanism of oxidized V58C FIS induced by the GuHCl salt was reproduced by urea denaturation at pH 4, suggesting that disruption of a C-terminus salt-bridge network is responsible for the loss of denaturation cooperativity of V58C FIS in GuHCl or urea, pH 4. A second mutation on V58C FIS created to place a single tryptophan probe (Y95W) at the C-terminus further implies that the denaturation intermediate observed in disulfide crossed-linked V58C FIS results from a decoupling of the stabilities of the C-terminus and the rest of the protein. These results show that, unlike the C30-C30 intermolecular disulfide bond, the C58-C58 disulfide bond did not evenly stabilize the FIS structure, thereby highlighting the importance of the location of an engineered disulfide bond on the propagation of stability and the denaturation cooperativity of a protein.  相似文献   

18.
Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. After propeptide-mediated folding in the periplasm, the proenzyme is autoproteolytically processed, prior to translocation of both the mature enzyme and the propeptide across the outer membrane. The formation of the two disulfide bonds present in the mature enzyme was examined by studying the expression of the wild-type enzyme and of alanine for cysteine mutant derivatives in the authentic host and in dsb mutants of Escherichia coli. It appeared that the two disulfide bonds are formed successively. First, DsbA catalyzes the formation of the disulfide bond between Cys-270 and Cys-297 within the proenzyme. This step is essential for the subsequent autoproteolytic processing to occur. The second disulfide bond between Cys-30 and Cys-57 is formed more slowly and appears to be formed after processing of the proenzyme, and its formation is catalyzed by DsbA as well. This second disulfide bond appeared to be required for the full proteolytic activity of the enzyme and contributes to its stability.  相似文献   

19.
Human NADH-cytochrome b5 reductase (EC 1.6.2.2) contains 4 cyteine residues (Cys-203, -273, -283, and -297). Cys-283 was previously proposed to be involved in NADH binding by chemical modification (Hackett, C. S., Novoa, W. B., Ozols, J., and Strittmatter, P. (1986) J. Biol. Chem. 261, 9854-9857). In the present study the role of cysteines in the enzyme was probed by replacing these residues by Ser, Ala, or Gly employing site-directed mutagenesis and chemical modification. Four mutants, in which 1 of the 4 Cys residues was replaced by Ser, retained comparable kcat and Km values to those of the wild type. All of these mutants were as sensitive as the wild type to treatment with SH modifiers, while a double mutant, C273S/C283S was resistant. Since inhibition by SH modifiers was protected by NADH, Cys-273 and Cys-283 were implicated to be close to the NADH-binding site. C273A and C273A/C283A mutants showed approximately one-fifth of the enzyme-FAD reduction rate of the wild type as revealed by steady-state kinetics and by stopped-flow analysis. Anaerobic titration has shown that reduction and re-oxidation processes including formation of the red semiquinone of these mutants were not significantly altered from those of the wild type. From these results it was concluded that none of the Cys residues of the enzyme are essential in the catalytic reaction, but Cys-273 conserved among the enzymes homologous to NADH-cytochrome b5 reductase homologous to NADH-cytochrome b5 reductase plays role(s) in facilitating the reaction. A difference spectrum with a peak at 317 nm, which was formerly considered to be derived from the interaction between NAD+ and Cys-283 of the reduced enzyme, appeared upon binding of NAD+ not only to the reduced wild type enzyme but also to the C273A/C283A mutant in which both of the Cys residues close to the NADH-binding site were replaced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号