首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We studied the role of Ras signaling in the regulation of cell death during Drosophila eye development. Overexpression of Argos, a diffusible inhibitor of the EGF receptor and Ras signaling, caused excessive cell death in developing eyes at pupal stages. The Argos-induced cell death was suppressed by coexpression of the anti-apoptotic genes p35, diap1, or diap2 in the eye as well as by the Df(3L)H99 chromosomal deletion that lacks three apoptosis-inducing genes, reaper, head involution defective (hid) and grim. Transient misexpression of the activated Ras1 protein (Ras1V12) later in pupal development suppressed the Argos-induced cell death. Thus, Argos-induced cell death seemed to have resulted from the suppression of the anti-apoptotic function of Ras. Conversely, cell death induced by overexpression of Hid was suppressed by gain-of-function mutations of the genes coding for MEK and ERK. These results support the idea that Ras signaling functions in two distinct processes during eye development, first triggering the recruitment of cells and later negatively regulating cell death.  相似文献   

3.
Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.  相似文献   

4.
Signaling via the receptor tyrosine kinase (RTK)/Ras pathway promotes tissue growth during organismal development and is increased in many cancers [1]. It is still not understood precisely how this pathway promotes cell growth (mass accumulation). In addition, the RTK/Ras pathway also functions in cell survival, cell-fate specification, terminal differentiation, and progression through mitosis [2-7]. An important question is how the same canonical pathway can elicit strikingly different responses in different cell types. Here, we show that the HMG-box protein Capicua (Cic) restricts cell growth in Drosophila imaginal discs, and its levels are, in turn, downregulated by Ras signaling. Moreover, unlike normal cells, the growth of cic mutant cells is undiminished in the complete absence of a Ras signal. In addition to a general role in growth regulation, the importance of cic in regulating cell-fate determination downstream of Ras appears to vary from tissue to tissue. In the developing eye, the analysis of cic mutants shows that the functions of Ras in regulating growth and cell-fate determination are separable. Thus, the DNA-binding protein Cic is a key downstream component in the pathway by which Ras regulates growth in imaginal discs.  相似文献   

5.
Chen F  Rebay I 《Current biology : CB》2000,10(15):943-946
Signaling by DER, the Drosophila epidermal growth factor receptor tyrosine kinase (RTK), is essential for proper migration and survival of midline glial cells (MGCs) in the embryonic central nervous system (CNS) [1-4]. We recently isolated a gene called split ends (spen) in a screen designed to identify new components of the RTK/Ras pathway [5]. Drosophila Spen and its orthologs are characterized by a distinct set of RNA recognition motifs (RRMs) and a SPOC domain, a highly conserved carboxy-terminal domain of unknown function [5-7]. To investigate spen function in the context of RTK signaling, we examined the consequences of spen loss-of-function mutations on embryonic CNS development. We found that spen was required for normal migration and survival of MGCs and that embryos lacking spen had CNS defects strikingly reminiscent of those seen in mutants of several known components of the DER signaling pathway. In addition, spen interacted synergistically with the RTK effector pointed. Using MGC-targeted expression, we found that increased Ras signaling rescued the lethality associated with expression of a dominant-negative spen transgene. Therefore, spen encodes a positively acting component of the DER/Ras signaling pathway.  相似文献   

6.
BACKGROUND: Cell growth arrest and autophagy are required for autophagic cell death in Drosophila. Maintenance of growth by expression of either activated Ras, Dp110, or Akt is sufficient to inhibit autophagy and cell death in Drosophila salivary glands, but the mechanism that controls growth arrest is unknown. Although the Warts (Wts) tumor suppressor is a critical regulator of tissue growth in animals, it is not clear how this signaling pathway controls cell growth. RESULTS: Here, we show that genes in the Wts pathway are required for salivary gland degradation and that wts mutants have defects in cell growth arrest, caspase activity, and autophagy. Expression of Atg1, a regulator of autophagy, in salivary glands is sufficient to rescue wts mutant salivary gland destruction. Surprisingly, expression of Yorkie (Yki) and Scalloped (Sd) in salivary glands fails to phenocopy wts mutants. By contrast, misexpression of the Yki target bantam was able to inhibit salivary gland cell death, even though mutations in bantam fail to suppress the wts mutant salivary gland-persistence phenotype. Significantly, wts mutant salivary glands possess altered phosphoinositide signaling, and decreased function of the class I PI3K-pathway genes chico and TOR suppressed wts defects in cell death. CONCLUSIONS: Although we have previously shown that salivary gland degradation requires genes in the Wts pathway, this study provides the first evidence that Wts influences autophagy. Our data indicate that the Wts-pathway components Yki, Sd, and bantam fail to function in salivary glands and that Wts regulates salivary gland cell death in a PI3K-dependent manner.  相似文献   

7.
Irniger S  Bäumer M  Braus GH 《Genetics》2000,154(4):1509-1521
In budding yeast, the Ras/cAMP pathway is involved in the coordination of cell growth and cell division. Glucose-rich medium stimulates Ras/cAMP signaling, which causes an increase in the critical cell size for cell cycle entry. Here we show that glucose and activated Ras proteins also influence the function of the anaphase-promoting complex (APC/C), a ubiquitin-protein ligase required for sister chromatid separation and mitotic exit. We found that apc10-22 and other mutants defective in the APC/C are suppressed by reduced Ras signaling activity, by a deletion of the RAS2 gene, by a cdc25 mutation, by elevated levels of PDE2, or by growth without glucose. Viability of these mutants is also enhanced by decreased Cdk1 activity. In contrast, a constitutively activated RAS2(Val19) allele or shifts to glucose medium are deleterious to apc10-22 mutants. Remarkably, cdc34-2 mutants, which are impaired in SCF function, are differently affected with respect to Ras activity. Viability of cdc34-2 mutants at elevated temperatures is dependent on glucose and the RAS2 gene. We conclude that glucose and Ras proteins influence the APC/C and the SCF complex in an opposite manner. These ubiquitin ligases might represent novel targets for modulating cell division in response to growth conditions.  相似文献   

8.
Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival   总被引:6,自引:0,他引:6  
Satoh AK  Ready DF 《Current biology : CB》2005,15(19):1722-1733
BACKGROUND: Arrestins are pivotal, multifunctional organizers of cell responses to GPCR stimulation, including cell survival and cell death. In Drosophila norpA and rdgC mutants, endocytosis of abnormally stable complexes of rhodopsin (Rh1) and fly photoreceptor Arrestin2 (Arr2) triggers cell death, implicating Rh1/Arr2-bearing endosomes in pro-cell death signaling, potentially via arrestin-mediated GPCR activation of effector kinase pathways. In order to further investigate arrestin function in photoreceptor physiology and survival, we studied Arr2's partner photoreceptor arrestin, Arr1, in developing and adult Drosophila compound eyes. RESULTS: We report that Arr1, but not Arr2, is essential for normal, light-induced rhodopsin endocytosis. Also distinct from Arr2, Arr1 is essential for light-independent photoreceptor survival. Photoreceptor cell death caused by loss of Arr1 is strongly suppressed by coordinate loss of Arr2. We further find that Rh1 C-terminal phosphorylation is essential for light-induced endocytosis and also for translocation of Arr1, but not Arr2, from dark-adapted photoreceptor cytoplasm to photosensory membrane rhabdomeres. In contrast to a previous report, we do not find a requirement for photoreceptor myosin kinase NINAC in Arr1 or Arr2 translocation. CONCLUSIONS: The two Drosophila photoreceptor arrestins mediate distinct and essential cell pathways downstream of rhodopsin activation. We propose that Arr1 mediates an endocytotic cell-survival activity, scavenging phosphorylated rhodopsin and thereby countering toxic Arr2/Rh1 accumulation; elimination of toxic Arr2/Rh1 in double mutants could thus rescue arr1 mutant photoreceptor degeneration.  相似文献   

9.
A large number of neural and glial cell species differentiate from neuronal precursor cells during nervous system development. Two types of Drosophila optic lobe neurons, lamina and medulla neurons, are derived from the neuroepithelial (NE) cells of the outer optic anlagen. During larval development, epidermal growth factor receptor (EGFR)/Ras signaling sweeps the NE field from the medial edge and drives medulla neuroblast (NB) formation. This signal drives the transient expression of a proneural gene, lethal of scute, and we refer to its signal array as the "proneural wave," as it is the marker of the EGFR/Ras signaling front. In this study, we show that the atypical cadherin Fat and the downstream Hippo pathways regulate the transduction of EGFR/Ras signaling along the NE field and, thus, ensure the progress of NB differentiation. Fat/Hippo pathway mutation also disrupts the pattern formation of the medulla structure, which is associated with the regulation of neurogenesis. A candidate for the Fat ligand, Dachsous is expressed in the posterior optic lobe, and its mutation was observed to cause a similar phenotype as fat mutation, although in a regionally restricted manner. We also show that Dachsous functions as the ligand in this pathway and genetically interacts with Fat in the optic lobe. These findings provide new insights into the function of the Fat/Hippo pathway, which regulates the ordered progression of neurogenesis in the complex nervous system.  相似文献   

10.
Transducin-like enhancer of split-1 (TLE1) plays a critical role in the regulation of neurogenesis by inhibiting the differentiation of neural progenitor cells into neurons. Although TLE1 is also expressed highly in the postnatal brain and through adulthood, its role in postmitotic neurons is not clear. Using cultures of cerebellar granule neurons, we show that expression of TLE1 is reduced in neurons primed to die. Reestablishment of elevated TLE1 levels by ectopic expression protects neurons from death, whereas suppression of TLE1 expression in otherwise healthy neurons induces cell death. These results show that TLE1 is necessary for the maintenance of neuronal survival. Experiments using pharmacological inhibitors as well as expression of point mutants indicate that phosphorylation of TLE1 by casein kinase-2 (CK2) at Ser-239 and Ser-253 is necessary for its survival-promoting activity. TLE1-mediated survival is also inhibited by pharmacological inhibition of PI3K-Akt signaling but not by inhibitors of Raf-MEK-ERK signaling or other molecules, including histone deacetylases, calcium calmodulin kinase, or CK1. The survival-promoting activity of TLE1 depends critically on interaction with FoxG1, another protein involved in the regulation of neurogenesis and shown previously to promote survival of postmitotic neurons. Likewise, the ability of FoxG1 to promote neuronal survival depends on TLE1. Taken together, our study demonstrates that TLE1 cooperates with FoxG1 to promote neuronal survival in a CK2- and PI3K-Akt-dependent manner.  相似文献   

11.
Branching morphogenesis is a widespread mechanism used to increase the surface area of epithelial organs. Many signaling systems steer development of branched organs, but it is still unclear which cellular processes are regulated by the different pathways. We have used the development of the air sacs of the dorsal thorax of Drosophila to study cellular events and their regulation via cell-cell signaling. We find that two receptor tyrosine kinases play important but distinct roles in air sac outgrowth. Fgf signaling directs cell migration at the tip of the structure, while Egf signaling is instrumental for cell division and cell survival in the growing epithelial structure. Interestingly, we find that Fgf signaling requires Ras, the Mapk pathway, and Pointed to direct migration, suggesting that both cytoskeletal and nuclear events are downstream of receptor activation. Ras and the Mapk pathway are also needed for Egf-regulated cell division/survival, but Pointed is dispensable.  相似文献   

12.
The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.  相似文献   

13.
Receptor tyrosine kinases such as the EGF receptor transduce extracellular signals into multiple cellular responses. In the developing Drosophila eye, EGFR activity triggers cell differentiation. Here we focus on three additional cell autonomous aspects of EGFR function and their coordination with differentiation, namely, withdrawal from the cell cycle, mitosis, and cell survival. We find that, whereas differentiation requires intense signaling, dependent on multiple reinforcing ligands, lesser EGFR activity maintains cell cycle arrest, promotes mitosis, and protects against cell death. Each response requires the same Ras, Raf, MAPK, and Pnt signal transduction pathway. Mitotic and survival responses also involve Pnt-independent branches, perhaps explaining how survival and mitosis can occur independently. Our results suggest that, rather than triggering all or none responses, EGFR coordinates partially independent processes as the eye differentiates.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) activation provides cell type-specific signals important for cellular differentiation, proliferation, and survival. Cyclic AMP (cAMP) has divergent effects on MAPK activity depending on whether signaling is through Ras/Raf-1 or Rap1/B-raf. We found that central nervous system-derived neurons, but not astrocytes, express B-raf. In neurons, cAMP activated MAPK in a Rap1/B-raf-dependent manner, while in astrocytes, cAMP decreased MAPK activity. Inhibition of MAPK in neurons decreased neuronal growth factor-mediated survival, and activation of MAPK by cAMP analogues rescued neurons from death. Furthermore, constitutive expression of B-raf in astrocytoma cells increased MAPK activation, as seen in neurons, and enhanced proliferation. These data provide the first experimental evidence that B-raf is the molecular switch which dominantly permits differential cAMP-dependent regulation of MAPK in neurons versus astrocytes, with important implications for both survival and proliferation.  相似文献   

15.
16.
Insulin signaling pathways are implicated in several physiological processes in invertebrates, including the control of growth and life span; the latter of these has also been correlated with juvenile hormone (JH) deficiency. In turn, JH levels have been correlated with sex-specific differences in locomotor activity. Here, the involvement of the insulin signaling pathway in sex-specific differences in locomotor activity was investigated in Drosophila. Ablation of insulin-producing neurons in the adult pars-intercerebralis was found to increase trehalosemia and to abolish sexual dimorphism relevant to locomotion. Conversely, hyper-insulinemia induced by insulin injection or by over-expression of an insulin-like peptide decreases trehalosemia but does not affect locomotive behavior. Moreover, we also show that in the head of adult flies, the insulin receptor (InR) is expressed only in the fat body surrounding the brain. While both male and female InR mutants are hyper-trehalosemic, they exhibit similar patterns of locomotor activity. Our results indicate that first, insulin controls trehalosemia in adults, and second, like JH, it controls sex-specific differences in the locomotor activity of adult Drosophila in a manner independent of its effect on trehalose metabolism.  相似文献   

17.
Mammalian Ras GTPase-activating protein (GAP), p120 Ras-GAP, has been implicated as both a downregulator and effector of Ras proteins, but its precise role in Ras-mediated signal transduction pathways is unclear. To begin a genetic analysis of the role of p120 Ras-GAP we identified a homolog from the fruit fly Drosophila melanogaster through its ability to complement the sterility of a Schizosaccharomyces pombe (fission yeast) gap1 mutant strain. Like its mammalian homolog, Drosophila RasGAP stimulated the intrinsic GTPase activity of normal mammalian H-Ras but not that of the oncogenic Val12 mutant. RasGAP was tyrosine phosphorylated in embryos and its Src homology 2 (SH2) domains could bind in vitro to a small number of tyrosine-phosphorylated proteins expressed at various developmental stages. Ectopic expression of RasGAP in the wing imaginal disc reduced the size of the adult wing by up to 45% and suppressed ectopic wing vein formation caused by expression of activated forms of Breathless and Heartless, two Drosophila receptor tyrosine kinases of the fibroblast growth factor receptor family. The in vivo effects of RasGAP overexpression required intact SH2 domains, indicating that intracellular localization of RasGAP through SH2-phosphotyrosine interactions is important for its activity. These results show that RasGAP can function as an inhibitor of signaling pathways mediated by Ras and receptor tyrosine kinases in vivo. Genetic interactions, however, suggested a Ras-independent role for RasGAP in the regulation of growth. The system described here should enable genetic screens to be performed to identify regulators and effectors of p120 Ras-GAP.  相似文献   

18.
19.
Trophic mechanisms in which neighboring cells mutually control their survival by secreting extracellular factors play an important role in determining cell number. However, how trophic signaling suppresses cell death is still poorly understood. We now show that the survival of a subset of midline glia cells in Drosophila depends upon direct suppression of the proapoptotic protein HID via the EGF receptor/RAS/MAPK pathway. The TGFalpha-like ligand SPITZ is activated in the neurons, and glial cells compete for limited amounts of secreted SPITZ to survive. In midline glia that fail to activate the EGFR pathway, HID induces apoptosis by blocking a caspase inhibitor, Diap1. Therefore, a direct pathway linking a specific extracellular survival factor with a caspase-based death program has been established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号