首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

2.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

3.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

4.
Two Ca2+-stimulated ATPase activities have been identified in the plasma membrane of rat parotid: (a) a (Ca2+ + Mg2+)-ATPase with high affinity for free Ca2+ (apparent Km = 208 nM, Vmax = 188 nmol/min per mg) and requiring micromolar concentration of Mg2+ and (b) a (Ca2+ or Mg2+)-ATPase with relatively low affinity for free Ca2+ (K0.5 = 23 microM) or free Mg2+ (K0.5 = 26 microM). The low-affinity (Ca2+ or Mg2+)-ATPase can be maximally stimulated by Ca2+ alone or Mg2+ alone. The high-affinity (Ca2+ + Mg2+)-ATPase exhibits sigmoidal kinetics with respect to ATP concentration with K0.5 = 0.4 mM and a Hill coefficient of 1.91. It displays low substrate specificity with respect to nucleotide triphosphates. Although trifluoperazine inhibits the activity of the high affinity (Ca2+ + Mg2+)-ATPase only slightly, it inhibits the activity of the low-affinity (Ca2+ or Mg2+)-ATPase quite potently with 22 microM trifluoperazine inhibiting the enzymic activity by 50%. Vanadate, inositol 1,4,5-trisphosphate, phosphatidylinositol 4,5-bisphosphate, Na+,K+ and ouabain had no effect on the activities of both ATPases. Calmodulin added to the plasma membranes does not stimulate the activities of both ATPases. The properties of the high-affinity (Ca2+ + Mg2+)-ATPase are distinctly different from those of the previously reported Ca2+-pump activity of the rat parotid plasma membrane.  相似文献   

5.
The activities of Mg2+-ATPase (Mg2+-activated ATPase), (Ca2+ + Mg2+)-activated ATPase and (Na+ + K+)-activated ATPase have been determined in microsomes (microsomal fractions) obtained from rat myometrium under different hormonal conditions. Animals were either ovariectomized and treated for a prolonged period of time with 17 beta-oestradiol or progesterone, or myometria were obtained at day 21 of pregnancy. In each case the endometrium was carefully removed. The Mg2+-ATPase consists of two components: an inactivating labile component and a second constant component. The rate of ATP hydrolysis by the labile component of the Mg2+-ATPase declines exponentially as a function of time after adding the membranes to the assay medium; this inactivation is caused by the presence of ATP in the medium. This ATPase activity inhibited by ATP is catalysed by a labile enzyme and hence it gradually diminishes within a few hours, even when the microsomes are kept on ice. This labile component has the highest activity in microsomes from pregnant rats, a lower activity in progesterone-treated rats, and the lowest in 17 beta-oestradiol-treated rats. This component of the Mg2+-ATPase is not affected by 90 nM-oxytocin. The constant component of the Mg2+-ATPase must be ascribed to a different enzyme, which, in contrast with the labile component, is very stable and not affected by the hormonal status of the animal. This constant component of the Mg2+-ATPase is inhibited both by Ca2+-calmodulin, and by oxytocin in microsomes from pregnant and from progesterone-treated animals, whereas such inhibition does not occur in microsomes from 17 beta-oestradiol-treated animals. The activity of the (Na+ + K+)-activated ATPase is not dependent on the hormonal status of the animal. Myometrial microsomes present an ATP-dependent Ca2+ transport, irrespective of the hormonal condition, but only in microsomes obtained from rats treated with 17 beta-oestradiol, can a (Ca2+ + Mg2+)-activated ATPase activity be demonstrated. This activity can be stimulated by calmodulin.  相似文献   

6.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
1. A high-affinity (Ca2+ + Mg2+)-ATPase and a low-affinity Mg(2+)-ATPase were identified in the 105,000 g fraction from epimastigote forms of Trypanosoma cruzi, the agent of Chagas' disease (Tulahuen strain). 2. Activities were conserved after enzyme solubilization with deoxycholate. 3. The Ca(2+)-stimulated ATPase activity was (a) lower than that of the Mg(2+)-ATPase; (b) inhibited by p-chloromercurobenzoate and orthovanadate and (c) insensitive to oligomycin. 4. Optimal stimulation by Ca2+ was observed at pH 6.5-6.8 in the presence of 1 mM MgCl2 and 0.1 M KCl. 5. The Mg(2+)-ATPase was insensitive to p-chloromercurobenzoate and orthovanadate and did not require KCl for activity. 6. Kinetic analysis of the (Ca2+ + Mg2+)-ATPase yielded a half-maximal stimulating concentration of 1.1 microM for Ca2+ and a Km of 66 microM for ATP. 7. The (Ca2+ + Mg2+)-ATPase clearly differed from the Ca(2+)- or Mg(2+)-ATPases previously characterized in the same strain of T. cruzi (Frasch et al., 1978; Comp. Biochem. Physiol. 60B, 271-275).  相似文献   

8.
Chloroplast absorbs light energy and transforms it into electron energy, and then converts it into active chemical energy and stable chemical energy. In the present paper, we investigated the effects of Ce(3+), which has the most significant catalytic effects and similar characteristics with Ca(2+), on light energy conversion of spinach chloroplasts under Ca(2+)-deficient stress. The results illuminated that the Hill reaction activity, electron flow both photosystems and photophosphorylation rate of spinach chloroplasts reduced significantly under Ca(2+)-deficient condition, and activities of Mg(2+)-ATPase and Ca(2+)-ATPase on the thylakoid membrane were severely inhibited. Meanwhile, the activity of Rubisco, which is the key enzyme of photosynthetic carbon assimilation, was also prohibited. However, Ce(3+) decreased the inhibition of calcium deprivation the electron transport rate, the oxygen evolution rate, the cyclic and noncyclic photophosphorylation, the activities of Mg(2+)-ATPase, Ca(2+)-ATPase and Rubisco of spinach chloroplasts. All above implied that Ca(2+)-depletion could disturb light energy conversion of chloroplasts strongly, which could be reversed by Ce(3+).  相似文献   

9.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

10.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 mumol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 +/- 9 microM and 0.25 +/- 0.10 microM, respectively. Phosphorylation of plasma membranes with [gamma-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

11.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

12.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

13.
1. The transduction of energy from the oxidation of substrates by the electron transport chain or from the hydrolysis of ATP by the Mg2+-ATPase was measured in everted membrane vesicles of Escherichia coli using the energy-dependent quenching of quinacrine fluorescence and the active transport of calcium. 2. Treatment of everted membranes derived from a wild-type strain with the chaotropic agents guanidine-HC1 and urea caused a loss of energy-linked functions and an increase in the permeability of the membrane to protons, as measured by the loss of respiratory-linked proton uptake. 3. The coupling of energy to the quenching of quinacrine fluorescence and calcium transport could be restored by treatment of the membranes with N,N'-dicyclohyexylcarbodiimide. 4. Chaotrope-treated membranes were found to lack Mg2+-ATPase activity. Binding of crude soluble Mg2+-ATPase to treated membranes restored energy-linked functions. 5. Membranes prepared from a wild-type strain grown under anaerobic conditions in the presence of nitrate retained respiration-linked quenching of quinacrine fluorescence and active transport of calcium after treatment with chaotropic agents. 6. Everted membrane vesicles prepared from an Mg2+-ATPase deficient strain lacked respiratory-driven functions when the cells were grown aerobically but were not distinguishable from membranes of the wild-type when both were grown under anaerobic conditions in the presence of nitrate. 7. It is concluded (a) that chaotropic agents solubilize a portion of the Mg2+-ATPase, causing an increase in the permeability of the membrane to protons and (b) that growth under anaerobic conditions in the presence of nitrate prevents the increase in proton permeability caused by genetic or chemical removal of the catalytic portion of the Mg2+-ATPase.  相似文献   

14.
We have studied the effect of Ruthenium red on the sarcoplasmic reticulum Ca(2+)-ATPase. Ruthenium red does not modify the Ca2+ pumping activity of the enzyme, despite its interaction with cationic binding sites on sarcoplasmic reticulum vesicles. Two pools of binding sites were distinguished. One pool (10 nmol/mg) is dependent upon the presence of micromolar Ca2+ and may therefore represent the high-affinity Ca2+ transport sites of the Ca(2+)-ATPase. However, Ruthenium red only slightly competes with Ca2+ on these sites. The other pool (15-17 nmol/mg) is characterized as low-affinity cation binding sites of sarcoplasmic reticulum, distinct from the Mg2+ site involved in the ATP binding to the Ca(2+)-ATPase. The interaction of Ruthenium red with these low-affinity cation binding sites, which may be located either on the Ca(2+)-ATPase or on surrounding lipids, decreases tryptophan fluorescence level of the protein. As much as 25% of the tryptophan fluorescence of the Ca(2+)-ATPase is quenched by Ruthenium red (with a dissociation constant of 100 nM), tryptophan residues located near the bilayer being preferentially affected.  相似文献   

15.
The ATP production of human erythrocytes in the steady state (approximately 2 mmoles . 1 cells-1 . h-1, 37 degrees C, pHi 7.2) is maintained by glycolysis and the ATP consumption is essentially limited to the cell membrane. About 25% of the ATP consumption is used for ion transport ATPases. The bulk of the ATP consuming processes in intact erythrocytes remains poorly understood. "Isotonic" erythrocyte membranes prepared under approximate intracellular conditions after freeze-thaw hemolysis have high (Ca2+, Mg2+)-ATPase activities (80% of the total membrane ATPase activity). There is a great discrepancy between the high capacity of the (Ca2+, Mg2+)-ATPase in isotonic membranes and the actual activity in the intact cell. The (Ca2+, Mg2+)-ATPase of isotonic membranes has a "high" Ca2+-affinity (Ka less than 0.5 microM) and a "low" Mg-ATP affinity (Km approximately 760 microM). This state of (Ca2+, Mg2+)-ATPase is caused by the association of calmodulin and 30000 Dalton polypeptides (ATP affinity modulator protein). Hypotonic washings of isotonic membranes result in a loss of the 30 kD polypeptides. EGTA (0.5 mM) extracts derived from isotonic membranes contain the 30 kD modulator protein and restore the properties of the (Ca2+, Mg2+)-ATPase of hypotonic membrane preparations to the isotonic characteristics. The Mg-ATP affinity modulator protein is assumed to form a complex with calmodulin and (Ca2+, Mg2+)-ATPase.  相似文献   

16.
Rat liver plasma membranes hydrolyze ATP in the presence of Ca2+. The rate of hydrolysis is different when Mg2+ions are present in the incubation system. Several parameters differentiate Ca2+-ATPase from Mg2+-ATPase: a) the Km of ATP hydrolysis for Ca2+ (2.25 x 10(-4) M) is lower than for Mg2+ (2.14 x 10(-3) M); b) the shape of the activation curve is hyperbolic in the presence of Ca2+ and sigmoid in the presence of Mg2+; c) Mg2+-ATPase shows two different values of activation energy while Ca2+-ATPase presents only a single value; d) Ca2+-ATPase is inhibited, while Mg2+-ATPase is unaffected by cyclic AMP. Ca2+-ATPase is localized on the plasma membrane and is not inhibited by cysteine. It does not hydrolyze substrates different from nucleotides triphosphate, such as glucose-1-phosphate or alpha-glycero-phosphate. The enzyme is probably related to a mechanism of calcium transport.  相似文献   

17.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

18.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

19.
A potent inhibitor of (Na+ + K+)-ATPase activity was purified from Sigma equine muscle ATP by cation- and anion-exchange chromatography. The isolated inhibitor was identified by atomic absorption spectroscopy and proton resonance spectroscopy to be an inorganic vanadate. The isolated vanadate and a solution of V2O5 inhibit sarcolemma (Na+ + K+)-ATPase with an I50 of 1 micrometer in the presence of 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), 145 mM NaCl, 6mM MgCl2, 15 mM KCl and 2 mM synthetic ATP. The potency of the isolated vanadate is increased by free Mg2+. The inhibition is half maximally reversed by 250 micrometer epinephrine. Equine muscle ATP was also found to contain a second (Na+ + K+)-ATPase inhibitor which depends on the sulfhydryl-reducing agent dithioerythritol for inhibition. This unknown inhibitor does not depend on free Mg2+ and is half maximally reversed by 2 micrometer epinephrine. Prolonged storage or freeze-thawing of enzyme preparations decreases the susceptibility of the (Na+ + K+)-ATPase to this inhibitor. The adrenergic blocking agents, propranolol and phentolamine, do not block the catecholamine reactivation. The inhibitors in equine muscle ATP also inhibit highly purified (Na+ + K+)-ATPase from shark rectal gland and eel electroplax. The inhibitors in equine muscle ATP have no effect on the other sarcolemmal ATPases, Mg2+-ATPase, Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase.  相似文献   

20.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号