首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Plasma sex hormone-binding globulin (SHBG or SBP), the specific carrier for estradiol and androgens, after binding to its membrane receptor (SHBG-R), causes a significant increase of cAMP in the presence of estradiol, in both breast (MCF-7) and prostate (LNCaP) cancer cells maintained in serum-free medium. On the other hand, it has been proposed that estrogens, in addition to the well-known nuclear receptor pathway, exert their biological effect inducing cAMP, as a consequence of a direct membrane action, in breast cancer and uterine cells. The aim of the present study was to clarify this controversial issue by verifying if the cAMP increase in MCF-7 cells was a direct effect of estradiol, or if it was mediated by FCS proteins, such as bovine sex hormone-binding globulin; and to reevaluate the effect of human SHBG on cAMP induction in the presence of FCS. MCF-7 cells were maintained in DCC-FCS (treated with DCC to remove steroids), in SHBG-FREE/DCC-FCS (treated with DCC and with a specific affinity chromatography to remove bovine sex hormone-binding globulin), or in serum-free medium (SFM). It was observed that estradiol determined a significant time-dependent increase of cAMP only in MCF-7 cells maintained in 10% DCC-FCS. When cells were maintained in 10% SHBG-FREE/DCC-FCS, estradiol had no detectable effect. However, its ability to increase cAMP was observed again after the addition of human SHBG, in doses ranging from 5 to 50 nM. Moreover, in the presence of 10% SHBG-FREE/DCC-FCS, SHBG, even in the absence of estradiol, caused a significant increase of cAMP. In conclusion, the data reported in the present study suggest that the ability of estradiol to induce cAMP in MCF-7 cells is not due to a direct membrane effect of the hormone, but rather it is mediated by FCS. SHBG is one of the serum factors mediating estradiol action. Lastly, it was proven that SHBG triggers the cAMP pathway in MCF-7 cells in a physiologic culture condition and at physiologic concentrations.  相似文献   

2.
3.
4.
5.
Sex hormone-binding globulin (SHBG) is a plasma glycoprotein that regulates the action of steroid hormones at several levels. SHBG regulates the availability of free androgens and estradiol to hormone-responsive tissues. Moreover, SHBG is also part of a novel steroid signaling system. We report here on the mechanism of action and the biological effects of SHBG in breast cancer cells, especially distinguishing cross-talk between membrane-initiated SHBG and estradiol pathways. After interacting with a specific binding site on breast cancer cell membranes, SHBG activates a specific pathway, and by cAMP induction, inhibits estradiol-mediated activation of ERK. Both estradiol and SHBG membrane-initiated pathways involve cross-talk at MAP kinase level with the ultimate result of inhibiting estradiol-mediated cell growth and antiapoptosis. On the basis of reported evidence, we suggest that SHBG is one of the regulators of growth and apoptosis of estrogen-dependent breast cancer cells.  相似文献   

6.
7.
NgBR is a type I receptor with a single transmembrane domain and was identified as a specific receptor for Nogo-B. Our recent findings demonstrated that NgBR binds farnesylated Ras and recruits Ras to the plasma membrane, which is a critical step required for the activation of Ras signaling in human breast cancer cells and tumorigenesis. Here, we first use immunohistochemistry and real-time PCR approaches to examine the expression patterns of Nogo-B and NgBR in both normal and breast tumor tissues. Then, we examine the relationship between NgBR expression and molecular subtypes of breast cancer, and the roles of NgBR in estrogen-dependent survivin signaling pathway. Results showed that NgBR and Nogo-B protein were detected in both normal and breast tumor tissues. However, the expression of Nogo-B and NgBR in breast tumor tissue was much stronger than in normal breast tissue. The statistical analysis demonstrated that NgBR is highly associated with ER-positive/HER2-negative breast cancer. We also found that the expression of NgBR has a strong correlation with the expression of survivin, which is a well-known apoptosis inhibitor. The correlation between NgBR and survivin gene expression was further confirmed by real-time PCR. In vitro results also demonstrated that estradiol induces the expression of survivin in ER-positive T47D breast tumor cells but not in ER-negative MDA-MB-468 breast tumor cells. NgBR knockdown with siRNA abolishes estradiol-induced survivin expression in ER-positive T47D cells but not in ER-negative MDA-MB-468 cells. In addition, estradiol increases the expression of survivin and cell growth in ER-positive MCF-7 and T47D cells whereas knockdown of NgBR with siRNA reduces estradiol-induced survivin expression and cell growth. In summary, these results indicate that NgBR is a new molecular marker for breast cancer. The data suggest that the expression of NgBR may be essential in promoting ER-positive tumor cell proliferation via survivin induction in breast cancer.  相似文献   

8.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

9.
In the presented study, we have analysed effects of the environmental estrogens bisphenol A (BPA), p-tert-octylphenol (OCT), o,p'-DDT (DDT) and coumestrol (COU) on cell proliferation, apoptosis induction, progesterone receptor (PR) and androgen receptor (AR) mRNA expression and ER alpha protein expression in comparison to estradiol (E2) and the selective ER modulator (SERM) raloxifene (RAL) and the pure antiestrogen faslodex (ICI 182780) in the human breast cancer cell line MCF-7. A dose dependent analysis of the cell cycle distribution of MCF-7 cells after administration of OCT, DDT and COU revealed a significant induction of cell proliferation and reduced rate of apoptosis. Maximum induction of cell proliferation and the lowest rate of apoptosis could be observed at a dose of 10(-6)M. Interestingly, administration of BPA reduces the rate of apoptosis, but does not enhance proliferation at any dose analysed. PR mRNA expression in MCF-7 cells was up regulated after administration of COU and DDT, whereas treatment with BPA and OCT did not effect PR mRNA expression. AR mRNA expression was down regulated by COU, but not effected by BPA, DDT and OCT. The expression of ER alpha protein in the breast cancer cells was slightly down regulated by COU and DDT, but unaffected by BPA and OCT. In summary and in comparison to the effects observed after administration of E2, RAL and ICI our data indicate that none of the analysed compounds exhibit properties comparable to RAL and ICI. COU and DDT exhibit properties which are very similar to E2. Administration of BPA and OCT did not effect any of the estrogen sensitive molecular parameters analysed. Nevertheless OCT is a very potent stimulator of cell proliferation in MCF-7 cells. Surprisingly, BPA is not able to induce the proliferation of MCF-7 breast cancer cells, but turns out to be a very potent inhibitor of apoptosis. For this reason and in agreement to the effects of BPA on the molecular parameters analysed, we conclude that BPA does not act in a classical estrogen like manner in MCF-7 breast cancer cells.  相似文献   

10.
Recent clinical studies estimate that 60-70% of human ovarian and breast cancers overexpress the estrogen receptor (ER). However, despite the established mitogenic effects of estrogen in these tumors, proliferative markers of hormone action are limited. In the current study, we report that the growth stimulatory cytokine stromal cell-derived factor 1 (SDF-1) is a bona fide target of estrogen action in ERalpha-positive human ovarian and breast cancer cells. Notably, estradiol treatment of BG-1 (ovarian carcinoma) and MCF-7 (breast carcinoma) cells leads to rapid and robust induction of the SDF-1alpha and beta isoforms. This response is blocked by the pure ER antagonist ICI 182,780 and is not apparent in ER-negative ovarian cells, indicating that SDF-1 regulation is ERalpha mediated. Treatment with the protein synthesis inhibitor cycloheximide had no effect on estradiol induction of induction of SDF-1 mRNA levels mRNA levels, demonstrating that SDF-1 is a direct target of ERalpha. SDF-1 protein levels, although undetectable under basal conditions, were strikingly increased by hormone both intracellularly and in the media of cultured BG-1 and MCF-7 cells. In cell proliferation assays, the mitogenic effects of estradiol were neutralized by addition of an SDF-1 antibody and mimicked by the addition of exogenous SDF-1 protein, indicating that SDF-1 mediates the proliferative actions of hormone. Furthermore, activation of the SDF-1 receptor CXCR4 stimulated BG-1 and MCF-7 cell proliferation in a manner comparable to estradiol. Taken together, these results demonstrate a novel estrogen-mediated paracrine pathway for inducing cancer cell proliferation and suggest that SDF-1 and CXCR4 may represent novel therapeutic targets in ERalpha-positive ovarian and breast tumors.  相似文献   

11.
Expression of an estrogen receptor alpha (ER) transgene in hormone independent breast cancer and normal breast epithelial cells arrests cell cycling when estradiol is added. Although endogenously expressed ER does not typically affect estradiol-induced cell cycling of hormone dependent breast cancer cells, we observed that elevated expression of a green fluorescent protein fused to ER (GFP-ER) hindered entry of estrogen treated MCF-7 cells into S phase of the cell cycle. In analyses of key cell-cycle regulating proteins, we observed that GFP-ER expression had no affect on the protein levels of cyclin D1, cyclin E, or p27, a cyclin dependent kinase (Cdk) inhibitor. However, at 24 h, p21 (Waf1, Cip1; a Cdk2 inhibitor) protein remained elevated in the high GFP-ER expressing cells but not in non-GFP-ER expressing cells. Elevated expression of p21 inhibited Cdk2 activity, preventing cells from entering S phase. The results show that elevated levels of ER prevented the down-regulation of p21 protein expression, which is required for hormone responsive cells to enter S phase.  相似文献   

12.
Loss of estrogen-responsiveness and impaired E-cadherin expression/function has been linked to increased metastatic potential of breast cancer cells. In this study, we report that proliferation of breast cancer cells can resume following removal of a toxic stimulus causing severe impairment of cell adhesion and estrogen responsiveness. This type of response was induced by okadaic acid (OA) in MCF-7 cells, and was accompanied by an almost complete block of DNA synthesis, loss of cell-cell contact and cell detachment from culture dishes, loss of estrogen receptor (ER), progesterone receptor (PR) and E-cadherin, whereas only a weak, if any, inhibition of protein synthesis could be observed. These responses were detected in MCF-7 cells after a 1-day treatment with 50 nM OA, and could be reversed if OA-treated cells were recovered in a culture medium devoid of the toxin, so that rescued cells resumed growth 8-12 days after replating. By pulse-chase experiments, we found that protein synthesis was not significantly affected in rescued cells, whose DNA synthesis, instead, was almost completely blocked during the first days of MCF-7 cell rescue from OA treatment. We also analyzed E-cadherin, mitogen activated protein kinase isoforms ERK1 and ERK2, Bcl-2 and BAX proteins during the rescue of MCF-7 cells from OA-induced cell death, and found that their expression followed temporally defined patterns. Cellular levels of E-cadherin returned to control levels within the first days of the rescue, followed by ER, ERK1, and ERK2, and finally by Bcl-2 and BAX proteins. Under our experimental conditions, restoration of cell adhesion did not require a functional ER system, but recovery of a normal ER pool accompanied resumption of estrogen-dependent proliferation of OA-treated MCF-7 cells.  相似文献   

13.
A conjugate of a C(11)-beta-derivative of estradiol and an asymmetric tetraphenylporphyrin was synthesized to study its potential selective uptake by breast cancer cells naturally over-expressing the nuclear receptor for estrogen (ER). Competitive radioligand binding assays of this conjugate with recombinant ER showed that the conjugate bound to ER in a dose-dependent manner with an EC50 of 274 nM, compared with 1 nM for estradiol, the natural ligand. Cellular uptake studies with ER-positive MCF-7 and ER-negative HS578t human breast cancer cells revealed that, the conjugate was taken up by MCF-7 cells in a dose-dependent manner, which was obliterated by co-incubation with a large excess of estradiol. On the other hand there was very little uptake of the un-conjugated porphyrin by MCF-7 and Hs578t cells. HS578t cells also showed insignificant uptake of the conjugate under the conditions of our experiment. These results strongly suggested that specific interaction between the endogenous ER in MCF-7 cells and the estrogen part of the conjugate enabled these cells to selectively internalize the conjugate over the un-conjugated porphyrin. Therefore, ER-binding conjugates of estradiol and porphyrins could potentially be used for ER-targeted photodynamic therapy of hormone-sensitive cancers of breast, ovary, gonads etc.  相似文献   

14.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

15.
Postmenopausal women with estrogen receptor positive (ER+) breast cancer frequently respond paradoxically to estrogen administration with tumor regression. Using both LTED and E8CASS cells derived from MCF-7 breast cancer cells by long-term estrogen-deprivation, we previously reported that 17 -estradiol (estradiol) is a powerful, pro-apoptotic hormone which kills the cancer cells through activation of the Fas/FasL death receptor pathway. We postulated that the mitochondrial interactive protein Bcl-2 might play a role in the regulation of estradiol-induced apoptosis in both LTED and E8CASS cells. In this study, we assessed estradiol effects on cell growth, proliferation and apoptosis. Additionally we investigated the effect of estradiol on caspase activation, NF-KB and Bcl-2 expression. The functional role of Bcl-2 in estradiol-induced apoptosis was further studied by knockdown or decrease of Bcl-2 with siRNA. Our results show that estradiol significantly inhibited cell growth primarily through a pro-apoptotic action involving caspase-7 and 9 activations (p < 0.01). Basal Bcl-2 and NF-KB levels were greatly elevated and estradiol decreased NF-KB, but not Bcl-2 expression. Knockdown of Bcl-2 expression with siRNA decreased the levels of this protein by 9 fold (p < 0.01). This reduction markedly sensitized both LTED and E8CASS cells to the pro-apoptotic action of estradiol, leading to a synergistic induction of apoptosis and a concomitant reduction in cell number (p < 0.01). Therefore, down-regulation of Bcl-2 synergistically enhanced estradiol-induced apoptosis in ER+ postmenopausal breast cancer cells.  相似文献   

16.
Postmenopausal women with estrogen receptor positive (ER+) breast cancer frequently respond paradoxically to estrogen administration with tumor regression. Using both LTED and E8CASS cells derived from MCF-7 breast cancer cells by long-term estrogen-deprivation, we previously reported that 17 -estradiol (estradiol) is a powerful, pro-apoptotic hormone which kills the cancer cells through activation of the Fas/FasL death receptor pathway. We postulated that the mitochondrial interactive protein Bcl-2 might play a role in the regulation of estradiol-induced apoptosis in both LTED and E8CASS cells. In this study, we assessed estradiol effects on cell growth, proliferation and apoptosis. Additionally we investigated the effect of estradiol on caspase activation, NF-KB and Bcl-2 expression. The functional role of Bcl-2 in estradiol-induced apoptosis was further studied by knockdown or decrease of Bcl-2 with siRNA. Our results show that estradiol significantly inhibited cell growth primarily through a pro-apoptotic action involving caspase-7 and 9 activations (p < 0.01). Basal Bcl-2 and NF-KB levels were greatly elevated and estradiol decreased NF-KB, but not Bcl-2 expression. Knockdown of Bcl-2 expression with siRNA decreased the levels of this protein by 9 fold (p < 0.01). This reduction markedly sensitized both LTED and E8CASS cells to the pro-apoptotic action of estradiol, leading to a synergistic induction of apoptosis and a concomitant reduction in cell number (p < 0.01). Therefore, down-regulation of Bcl-2 synergistically enhanced estradiol-induced apoptosis in ER+ postmenopausal breast cancer cells.  相似文献   

17.
18.
The progression of cancer is associated with tumor's ability to outgrow the existing vasculature resulting in chronic hypoxic pressure, however the molecular mechanism of cancer cell response to chronic hypoxia is poorly understood. In this study we have analyzed the reorganization of estrogen receptor (ER) signaling in breast cancer cells under chronic hypoxia and examined the role of interrelations between ER and NF-kB signaling in cell adaptation to hypoxia. Using long-term culturing of MCF-7 breast cancer cells in hypoxia-mimetic conditions (cobalt chloride) we have established a hypoxia-tolerant subline characterized by HIF-1 hyperexpression that retained the tolerance to hypoxia even when the cells were returned to normoxic conditions.The hypoxia-tolerant cells were characterized by non-affected ER signaling, irreversible suppression of NF-kB activity, and increased sensitivity to cytokine-induced apoptosis. Estradiol treatment suppressed the NF-kB activity in both parent and hypoxia-tolerant MCF-7 cells. In contrast to MCF-7 cells, the exposure of estrogen-independent MCF-7/T2 subline to chronic hypoxia was not accompanied by noticeable changes in NF-kB activity or cell sensitivity to cytokines. Taken together, the results presented demonstrate the importance of interrelations between ER and NF-kB signaling in the response of estrogen-dependent breast cancer cells to chronic hypoxia.  相似文献   

19.
20.
The presence of estrone sulfatase in breast tumors and the high levels of circulating estrone sulfate may contribute the major portion of estrogen synthesized locally in breast tissues through conversion of estrone sulfate to estrone by the enzyme. Using inhibitors of estrone sulfatase for the treatment of estrogen-dependent (estrogen receptor positive, ER(+)) breast cancer could be a very effective therapeutic strategy for the treatment of estrogen-dependent breast tumors in postmenopausal women. Therefore, we designed and synthesized several steroidal 2',3'-oxathiazines that inhibit estrone sulfatase and have greatly reduced estrogenic side effects. Our in vitro studies indicate that the oxathiazine compounds have inhibitory activity on estrone sulfatase in MCF-7 human breast cancer cells. These estrone sulfatase inhibitors (ESIs) also inhibit the growth of MCF-7 cells induced by estrone sulfate. In addition, our in vivo experiments demonstrate that our ESIs have moderate antitumor activity against MCF-7 breast cancer xenografts in Balb/c athymic nude mice. The synthesis and biological activity of a number of these unique steroidal ESIs are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号