首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During preparation, execution and recovery from simple movements, the EEG power spectrum undergoes a sequence of changes. The power in the beta band (13-25 Hz) decreases during preparation and execution of movement, but during recovery it reaches a level higher than that in the reference period (not affected by the event). These effects are known as event-related beta desynchronization and beta rebound. The power in the gamma band (>30 Hz) increases significantly just before the onset of the movement. This effect is known as event-related gamma synchronization. There are numerous observations concerning these effects but the underlying physiological mechanisms and functional role are not clear. We propose a lumped computational model of a cortical circuit. The model consists only of a pyramidal and an interneuronal population. Each population represents averaged properties of constituting neurons. The output of the model represents a local field potential, with a power spectrum peak either in the beta or in the gamma band. The model elucidates the mechanisms of transition between slower and faster rhythms, gamma synchronization and beta desynchronization and rebound effects. The sufficient conditions to observe the effects in the model are changes of the external excitation level and of the connection strength between excitatory and inhibitory populations attributed to short-time plasticity. The present model presents the role of the pyramidal neurons to interneuron connection in the oscillatory behavior of the two populations. We conclude that the pronounced facilitation of the pyramidal to fast spiking interneuron connections, initiated by robust excitation of the motor cortex neurons, may be essential for the effect of beta rebound. Further experiments concerning short-time plasticity during behavioral tasks would be of great value in studies of functional local cortical circuits.  相似文献   

2.
Synchronization of 30–80 Hz oscillatory activity of the principle neurons in the olfactory bulb (mitral cells) is believed to be important for odor discrimination. Previous theoretical studies of these fast rhythms in other brain areas have proposed that principle neuron synchrony can be mediated by short-latency, rapidly decaying inhibition. This phasic inhibition provides a narrow time window for the principle neurons to fire, thus promoting synchrony. However, in the olfactory bulb, the inhibitory granule cells produce long lasting, small amplitude, asynchronous and aperiodic inhibitory input and thus the narrow time window that is required to synchronize spiking does not exist. Instead, it has been suggested that correlated output of the granule cells could serve to synchronize uncoupled mitral cells through a mechanism called “stochastic synchronization”, wherein the synchronization arises through correlation of inputs to two neural oscillators. Almost all work on synchrony due to correlations presumes that the correlation is imposed and fixed. Building on theory and experiments that we and others have developed, we show that increased synchrony in the mitral cells could produce an increase in granule cell activity for those granule cells that share a synchronous group of mitral cells. Common granule cell input increases the input correlation to the mitral cells and hence their synchrony by providing a positive feedback loop in correlation. Thus we demonstrate the emergence and temporal evolution of input correlation in recurrent networks with feedback. We explore several theoretical models of this idea, ranging from spiking models to an analytically tractable model.  相似文献   

3.
Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks.  相似文献   

4.
5.
Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.  相似文献   

6.
We studied the detailed structure of a neuronal network model in which the spontaneous spike activity is correctly optimized to match the experimental data and discuss the reliability of the optimized spike transmission. Two stochastic properties of the spontaneous activity were calculated: the spike-count rate and synchrony size. The synchrony size, expected to be an important factor for optimization of spike transmission in the network, represents a percentage of observed coactive neurons within a time bin, whose probability approximately follows a power-law. We systematically investigated how these stochastic properties could matched to those calculated from the experimental data in terms of the log-normally distributed synaptic weights between excitatory and inhibitory neurons and synaptic background activity induced by the input current noise in the network model. To ensure reliably optimized spike transmission, the synchrony size as well as spike-count rate were simultaneously optimized. This required changeably balanced log-normal distributions of synaptic weights between excitatory and inhibitory neurons and appropriately amplified synaptic background activity. Our results suggested that the inhibitory neurons with a hub-like structure driven by intensive feedback from excitatory neurons were a key factor in the simultaneous optimization of the spike-count rate and synchrony size, regardless of different spiking types between excitatory and inhibitory neurons.  相似文献   

7.
Converging data suggest that abnormal synchronised oscillatory activity in the basal ganglia may contribute to bradykinesia in patients with Parkinson's disease. This synchrony preferentially occurs over 10-30 Hz, the so-called beta band. Correlative evidence has been supplemented by experiments in which direct stimulation of the basal ganglia in the beta band slows movement. Yet questions remain regarding the small scale of the latter effects and whether synchrony is an early or even obligatory feature of parkinsonism. Nevertheless, the principle that abnormally synchronised activity in the beta band can disrupt the function finds a precedent in the syndrome of cortical myoclonus. Here, pathologically synchronised discharges of pyramidal neurons are transmitted to the healthy spinal cord. The result is the synchronous discharge of motor units leading to rhythmic jerking.  相似文献   

8.
Ray S  Maunsell JH 《PLoS biology》2011,9(4):e1000610
During cognitive tasks electrical activity in the brain shows changes in power in specific frequency ranges, such as the alpha (8-12 Hz) or gamma (30-80 Hz) bands, as well as in a broad range above ~80 Hz, called the high-gamma band. The role or significance of this broadband high-gamma activity is unclear. One hypothesis states that high-gamma oscillations serve just like gamma oscillations, operating at a higher frequency and consequently at a faster timescale. Another hypothesis states that high-gamma power is related to spiking activity. Because gamma power and spiking activity tend to co-vary during most stimulus manipulations (such as contrast modulations) or cognitive tasks (such as attentional modulation), it is difficult to dissociate these two hypotheses. We studied the relationship between high-gamma power, gamma rhythm, and spiking activity in the primary visual cortex (V1) of awake monkeys while varying the stimulus size, which increased the gamma power but decreased the firing rate, permitting a dissociation. We found that gamma power became anti-correlated with the high-gamma power, suggesting that the two phenomena are distinct and have different origins. On the other hand, high-gamma power remained tightly correlated with spiking activity under a wide range of stimulus manipulations. We studied this relationship using a signal processing technique called Matching Pursuit and found that action potentials are associated with sharp transients in the LFP with broadband power, which is visible at frequencies as low as ~50 Hz. These results distinguish broadband high-gamma activity from gamma rhythms as an easily obtained and reliable electrophysiological index of neuronal firing near the microelectrode. Further, they highlight the importance of making a careful dissociation between gamma rhythms and spike-related transients that could be incorrectly decomposed as rhythms using traditional signal processing methods.  相似文献   

9.
Oscillatory synchrony could be used to establish dynamic links between the various cortical areas participating in the same cognitive process. Is it possible to detect oscillatory synchrony in humans, and is it relevant to behavior? There is now converging evidence for the existence of a transient oscillatory activity in the gamma range (30-60 Hz), obtained in response to static visual objects, and having only a loose temporal relationship to stimulus onset. This so-called "induced" gamma response is much larger in response to coherent static or moving objects. However, functional variations of gamma and/or beta (15-20 Hz) oscillations are not restricted to perceptive, bottom-up mechanisms, but are also observed during visual imagery or short-term memory maintenance. Oscillations at the scalp level thus seem to reflect large-scale neural cooperativity in a variety of task-dependent networks. Human intra-cranial recordings in a short-term memory paradigm further reveal the existence and the task-dependency of oscillatory synchrony in the beta range, between focal sites separated by several centimeters and with a few milliseconds time-lag. These findings thus confirm experimentally the hypothesis of a functional role of synchronized oscillatory activity in the coordination of distributed neural activity in humans, and support Hebb's concept of short-term memory maintenance by reentrant activity within the activated network. In addition, the intra-cranial data obtained in humans and monkeys also help to better understand the neural mechanisms generating scalp-recorded oscillations.  相似文献   

10.
The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (~2-6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ~300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ~130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine.  相似文献   

11.
High frequency subthalamic nucleus (STN) deep brain stimulation (DBS) improves the cardinal motor signs of Parkinson’s disease (PD) and attenuates STN alpha/beta band neural synchrony in a voltage-dependent manner. While there is a growing interest in the behavioral effects of lower frequency (60 Hz) DBS, little is known about its effect on STN neural synchrony. Here we demonstrate for the first time that during intra-operative 60 Hz STN DBS, one or more bands of resting state neural synchrony were amplified in the STN in PD. We recorded intra-operative STN resting state local field potentials (LFPs) from twenty-eight STNs in seventeen PD subjects after placement of the DBS lead (model 3389, Medtronic, Inc.) before and during three randomized neurostimulation sets (130 Hz/1.35V, 130 Hz/2V, 60 Hz/2V). During 130 Hz/2V DBS, baseline (no DBS) STN alpha (8 – 12 Hz) and beta (13 – 35 Hz) band power decreased (N=14, P < 0.001 for both), whereas during 60 Hz/2V DBS, alpha band and peak frequency power increased (P = 0.012, P = 0.007, respectively). The effect of 60 Hz/2V DBS opposed that of power-equivalent (130 Hz/1.35V) DBS (alpha: P < 0.001, beta: P = 0.006). These results show that intra-operative 60 Hz STN DBS amplified whereas 130 Hz STN DBS attenuated resting state neural synchrony in PD; the effects were frequency-specific. We demonstrate that neurostimulation may be useful as a tool to selectively modulate resting state resonant bands of neural synchrony and to investigate its influence on motor and non-motor behaviors in PD and other neuropsychiatric diseases.  相似文献   

12.
Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson’s disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson’s disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson’s disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.  相似文献   

13.
A Morley 《Blood cells》1979,5(2):283-296
Hemopoiesis exhibits a variety of oscillatory phenomena. Since hemopoiesis is controlled by many feedback loops and since feedback loops are potentially oscillatory, it is possible that the observed oscillatory phenomena are the result of movement of hemopoiesis into an area of operation which favors stable oscillation. Although this hypothesis explains many of the observed phenomena and has had some predictive value, its important predictions have not yet been satisfactorily tested.  相似文献   

14.
Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson''s disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson''s disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson''s disease.  相似文献   

15.
Mitochondria can behave as individual oscillators whose dynamics may obey collective, network properties. We have shown that cardiomyocytes exhibit high-amplitude, self-sustained, and synchronous oscillations of bioenergetic parameters when the mitochondrial network is stressed to a critical state. Computational studies suggested that additional low-amplitude, high-frequency oscillations were also possible. Herein, employing power spectral analysis, we show that the temporal behavior of mitochondrial membrane potential (DeltaPsi(m)) in cardiomyocytes under physiological conditions is oscillatory and characterized by a broad frequency distribution that obeys a homogeneous power law (1/f(beta)) with a spectral exponent, beta = 1.74. Additionally, relative dispersional analysis shows that mitochondrial oscillatory dynamics exhibits long-term memory, characterized by an inverse power law that scales with a fractal dimension (D(f)) of 1.008, distinct from random behavior (D(f) = 1.5), over at least three orders of magnitude. Analysis of a computational model of the mitochondrial oscillator suggests that the mechanistic origin of the power law behavior is based on the inverse dependence of amplitude versus frequency of oscillation related to the balance between reactive oxygen species production and scavenging. The results demonstrate that cardiac mitochondria behave as a network of coupled oscillators under both physiological and pathophysiological conditions.  相似文献   

16.
Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude alternating with episodes of low amplitude. Despite the widespread occurrence of amplitude fluctuations in many frequency bands and brain regions, the mechanisms by which they are generated are poorly understood. Here, we show that irregular transitions between sub-second episodes of high- and low-amplitude oscillations in the alpha/beta frequency band occur in a generic neuronal network model consisting of interconnected inhibitory and excitatory cells that are externally driven by sustained cholinergic input and trains of action potentials that activate excitatory synapses. In the model, we identify the action potential drive onto inhibitory cells, which represents input from other brain areas and is shown to desynchronize network activity, to be crucial for the emergence of amplitude fluctuations. We show that the duration distributions of high-amplitude episodes in the model match those observed in rat prefrontal cortex for oscillations induced by the cholinergic agonist carbachol. Furthermore, the mean duration of high-amplitude episodes varies in a bell-shaped manner with carbachol concentration, just as in mouse hippocampus. Our results suggest that amplitude fluctuations are a general property of oscillatory neuronal networks that can arise through background input from areas external to the network.  相似文献   

17.
We present an oscillatory network of conductance based spiking neurons of Hodgkin–Huxley type as a model of memory storage and retrieval of sequences of events (or objects). The model is inspired by psychological and neurobiological evidence on sequential memories. The building block of the model is an oscillatory module which contains excitatory and inhibitory neurons with all-to-all connections. The connection architecture comprises two layers. A lower layer represents consecutive events during their storage and recall. This layer is composed of oscillatory modules. Plastic excitatory connections between the modules are implemented using an STDP type learning rule for sequential storage. Excitatory neurons in the upper layer project star-like modifiable connections toward the excitatory lower layer neurons. These neurons in the upper layer are used to tag sequences of events represented in the lower layer. Computer simulations demonstrate good performance of the model including difficult cases when different sequences contain overlapping events. We show that the model with STDP type or anti-STDP type learning rules can be applied for the simulation of forward and backward replay of neural spikes respectively.  相似文献   

18.
Although beta oscillations (≈ 13–35 Hz) are often considered as a sensorimotor rhythm, their functional role remains debated. In particular, the modulations of beta power during preparation and execution of complex movements in different contexts were barely investigated. Here, we analysed the beta oscillations recorded with electroencephalography (EEG) in a precued grasping task in which we manipulated two critical parameters: the grip type (precision vs. side grip) and the force (high vs. low force) required to pull an object along a horizontal axis. A cue was presented 3 s before a GO signal and provided full, partial or no information about the two movement parameters. We measured beta power over the centro-parietal areas during movement preparation and execution as well as during object hold. We explored the modulations of power in relation to the amount and type of prior information provided by the cue. We also investigated how beta power was affected by the grip and force parameters.We observed an increase in beta power around the cue onset followed by a decrease during movement preparation and execution. These modulations were followed by a transient power increase during object hold. This pattern of modulations did not differ between the 4 movement types (2 grips ×2 forces). However, the amount and type of prior information provided by the cue had a significant effect on the beta power during the preparatory delay. We discuss how these results fit with current hypotheses on the functional role of beta oscillations.  相似文献   

19.
In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals. The aim of this work was twofold: whether learning also induces similar changes in OB target structures and whether such OB response depends on its centrifugal inputs. Local field potentials (LFPs) were recorded through chronically implanted electrodes in the OB, piriform and enthorhinal cortices of freely moving rats performing an olfactory discrimination. Oscillatory activities characteristics (amplitude, frequency and time-course) were extracted in beta and gamma range by a wavelet analysis. First, we found that odour induced beta oscillatory activity was present not only in the OB, but also in the other olfactory structures. In each recording site, characteristics of the beta oscillatory responses were dependent of odour, structure and learning level. Unilateral section of the olfactory peduncle was made before training, and LFPs were symmetrically recorded in the two bulbs all along the acquisition of the learning task. Data showed that deprivation of centrifugal feedback led to an increase of spontaneous gamma activity. Moreover, under this condition olfactory learning was no longer associated with the typical large beta band. As a whole, learning modulation of the beta oscillatory response in olfactory structures may reflect activity of a distributed functional network involved in odour representation.  相似文献   

20.
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the layer 10 (L10) neurons in the optic tectum and respond with oscillatory bursts to visual stimulation. Our in vitro experiments show that both neuron types respond with regular spiking to somatic current injection and that the feedforward and feedback synaptic connections are excitatory, but of different strength and time course. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation. A scan through the model parameter volume reveals that Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic conductance changes. The mechanism is sensitive to the parameter values of spike-rate adaptation. In conclusion, we show that a network of regular-spiking neurons with feedforward excitation and spike-rate adaptation can generate oscillatory bursting in response to a constant input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号