首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the fungus Penicillium chrysogenum, penicillin (PEN) production is compartmentalized in the cytosol and in peroxisomes. Here we show that intact peroxisomes that contain the two final enzymes of PEN biosynthesis, acyl coenzyme A (CoA):6-amino penicillanic acid acyltransferase (AT) as well as the side-chain precursor activation enzyme phenylacetyl CoA ligase (PCL), are crucial for efficient PEN synthesis. Moreover, increasing PEN titers are associated with increasing peroxisome numbers. However, not all conditions that result in enhanced peroxisome numbers simultaneously stimulate PEN production. We find that conditions that lead to peroxisome proliferation but simultaneously interfere with the normal physiology of the cell may be detrimental to antibiotic production. We furthermore show that peroxisomes develop in germinating conidiospores from reticule-like structures. During subsequent hyphal growth, peroxisome proliferation occurs at the tip of the growing hyphae, after which the organelles are distributed over newly formed subapical cells. We observed that the organelle proliferation machinery requires the dynamin-like protein Dnm1.Penicillins (PENs) belong to the group of β-lactam antibiotics that are produced as secondary metabolites by specific actinomycetous bacteria and fungal species (26). For the industrial production of PEN, the filamentous fungus Penicillium chrysogenum is used. The biosynthesis of penicillin G (PenG) has been characterized in detail at the genetic and biochemical levels using P. chrysogenum and a related fungus, Aspergillus nidulans, as model organisms (7, 28). Starting from three amino acids, α-amino adipic acid, cysteine, and valine, PenG is formed in three unique enzymatic conversions (Fig. (Fig.1).1). These amino acids are first condensed to a tripeptide mediated by the function of a nonribosomal peptide synthetase, δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV) synthetase (ACVS). The resulting tripeptide, ACV, is cyclized by isopenicillin N synthase (IPNS) to form a β-lactam, isopenicillin N (IPN). As a final step, the enzyme acyl coenzyme A (CoA):6-amino penicillanic acid acyltransferase (AT) replaces the α-aminoadipyl side chain of IPN with a more hydrophobic one. In industrial fermentations, phenylacetic acid (PAA) or phenoxyacetic acid (POA) is applied to produce PenG or penicillin V (PenV), respectively.Open in a separate windowFIG. 1.Schematic overview of the penicillin biosynthetic pathway. ACVS, δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase; IPNS, isopenicillin N synthase; AT, acyl-CoA:6-amino penicillanic acid acyltransferase; PCL, phenylacetyl CoA ligase; PAA, phenylacetic acid.In filamentous fungi, the PEN biosynthetic machinery is compartmentalized (Fig. (Fig.1).1). The first two enzymes, ACVS and IPNS, are both located in the cytosol (19, 32). As the pH of the cytosol in filamentous fungi is between 6.5 and 7.0 (9, 31), these enzymes are in their optimal physiological surroundings. The AT and phenylacetyl CoA ligase (PCL) enzymes have specific targeting sequences that sort these enzymes to the lumen of their target compartment, the peroxisome (18, 19). The pH of this organelle was shown to be 7.5, which is close to the pH optima of both AT and PCL (31). Apparently, the compartmentalization of these enzymes creates defined microenvironments and enables the generation of favorable substrate and cofactor concentrations for enzyme function.Peroxisomes (belonging to the family of microbodies) are ubiquitously present in eukaryotic cells. They typically consist of a protein-rich matrix surrounded by a single membrane and are 0.1 to 1 μm in size. Although their function is often species and cell type specific, two widely distributed functions can be distinguished, namely, H2O2 metabolism and β-oxidation of fatty acids (for reviews, see references 25, 29, and 30). Muller et al. (18, 19) demonstrated the role of peroxisomes in PEN biosynthesis for the first time. Subsequently, it was speculated that a correlation may exist between the volume fraction of these organelles and PEN production rates (18, 27). This speculation was reinforced by Kiel and colleagues (13), who showed that the artificial proliferation of peroxisomes via the overexpression of the pex11 gene was associated with a 2- to 3-fold increase in PEN production rates. Here we further elaborate on these studies and show that peroxisomes de facto are required for efficient PEN biosynthesis in P. chrysogenum. In addition, we present details on the origin and subsequent partitioning of the organelles over newly formed subapical cells during hyphal development.  相似文献   

2.
3.
Peroxisomes are unique organelles involved in multiple cellular metabolic pathways. Nitric oxide (NO) is a free radical active in many physiological functions under normal and stress conditions. Using Arabidopsis (Arabidopsis thaliana) wild type and mutants expressing green fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo, this study analyzes the temporal and cell distribution of NO during the development of 3-, 5-, 8-, and 11-d-old Arabidopsis seedlings and shows that Arabidopsis peroxisomes accumulate NO in vivo. Pharmacological analyses using nitric oxide synthase (NOS) inhibitors detected the presence of putative calcium-dependent NOS activity. Furthermore, peroxins Pex12 and Pex13 appear to be involved in transporting the putative NOS protein to peroxisomes, since pex12 and pex13 mutants, which are defective in PTS1- and PTS2-dependent protein transport to peroxisomes, registered lower NO content. Additionally, we show that under salinity stress (100 mm NaCl), peroxisomes are required for NO accumulation in the cytosol, thereby participating in the generation of peroxynitrite (ONOO) and in increasing protein tyrosine nitration, which is a marker of nitrosative stress.Peroxisomes are single membrane-bound organelles whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases as their basic enzymatic and are found in virtually all eukaryotic cell types (Corpas et al., 2001; Hayashi and Nishimura, 2006; Reumann et al., 2007; Pracharoenwattana and Smith, 2008; Palma et al., 2009). These oxidative organelles are characterized by metabolic plasticity, as their enzymatic content can vary according to the organism, cell/tissue type, and environmental conditions (Mullen et al., 2001; Hayashi and Nishimura, 2003; Corpas et al., 2009a). In higher plants, peroxisomes contain a complex battery of antioxidative enzymes, such as catalase, superoxide dismutase, the components of the ascorbate-glutathione cycle, and the NADP-dehydrogenases of the pentose-P pathway (Corpas et al., 2009a). The generation of superoxide radicals has also been reported in the matrices and membranes of peroxisomes (López-Huertas et al., 1999; del Río et al., 2006). All these findings point to the important role played by peroxisomes in the cellular metabolism of reactive oxygen species (Corpas et al., 2001, 2009a; del Río et al., 2006).Nitric oxide (NO) is a free radical involved in many physiological functions under normal and stress conditions in both animal and plant cells (Arasimowicz and Floryszak-Wieczorek, 2007; Corpas et al., 2007a, 2008; Neill et al., 2008). Unlike animal systems, knowledge of NO generation and subcellular location in plants remains largely elusive, and the data are sometimes contradictory and ambiguous (Zemojtel et al., 2006; Jasid et al., 2006; Gas et al., 2009). In previous studies, we detected l-Arg-dependent nitric oxide synthase (NOS) activity in isolated pea (Pisum sativum) leaf peroxisomes (Barroso et al., 1999). In a later study, using electron paramagnetic resonance techniques, we demonstrated the presence of NO in these types of peroxisomes (Corpas et al., 2004). However, several issues, such as whether NO is released into the cytosol and the physiological function of this free radical, remain unresolved.In this study, we provide an in vivo demonstration that Arabidopsis peroxisomes are essential for NO accumulation in the cytosol, thus participating in the generation of nitrosative stress under salinity conditions. In addition, using Arabidopsis mutants pex12 and pex13, we also suggest that these peroxins are involved in importing into peroxisomes the enzyme responsible for NO generation.  相似文献   

4.
5.
The transmembrane proteins MreC and MreD are present in a wide variety of bacteria and are thought to be involved in cell shape determination. Together with the actin homologue MreB and other morphological elements, they play an essential role in the synthesis of the lateral cell wall in rod-shaped bacteria. In ovococcus, which lack MreB homologues, mreCD are also essential and have been implicated in peripheral cell wall synthesis. In this work we addressed the possible roles of MreC and MreD in the spherical pathogen Staphylococcus aureus. We show that MreC and MreD are not essential for cell viability and do not seem to affect cell morphology, cell volume or cell cycle control. MreC and MreD localize preferentially to the division septa, but do not appear to influence peptidoglycan composition, nor the susceptibility to different antibiotics and to oxidative and osmotic stress agents. Our results suggest that the function of MreCD in S. aureus is not critical for cell division and cell shape determination.  相似文献   

6.
The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis.  相似文献   

7.
In eukaryotes, posttranslational modification by ubiquitin regulates the activity and stability of many proteins and thus influences a variety of developmental processes as well as environmental responses. Ubiquitination also plays a critical role in intracellular trafficking by serving as a signal for endocytosis. We have previously shown that the Arabidopsis thaliana ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM3 (AMSH3) is a deubiquitinating enzyme (DUB) that interacts with ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT-III (ESCRT-III) and is essential for intracellular transport and vacuole biogenesis. However, physiological functions of AMSH3 in the context of its ESCRT-III interaction are not well understood due to the severe seedling lethal phenotype of its null mutant. In this article, we show that Arabidopsis AMSH1, an AMSH3-related DUB, interacts with the ESCRT-III subunit VACUOLAR PROTEIN SORTING2.1 (VPS2.1) and that impairment of both AMSH1 and VPS2.1 causes early senescence and hypersensitivity to artificial carbon starvation in the dark similar to previously reported autophagy mutants. Consistent with this, both mutants accumulate autophagosome markers and accumulate less autophagic bodies in the vacuole. Taken together, our results demonstrate that AMSH1 and the ESCRT-III-subunit VPS2.1 are important for autophagic degradation and autophagy-mediated physiological processes.  相似文献   

8.
9.
10.
Actinomycin D inhibited the synthesis of poly(A)-containing messenger RNA in healthy soybean (Glycine max [L.] Merr. cv. Harosoy 63) hypocotyls and in hypocotyls inoculated with the pathogenic fungus Phytophthora megasperma var. sojae A. A. Hildb., but had little effect on protein synthesis within 6 hours. Blasticidin S, conversely, inhibited protein synthesis in the hypocotyls without exhibiting significant effects on messenger RNA synthesis. The normal cultivar-specific resistance of the Harosoy 63 soybean hypocotyls to the fungus was completely diminished by actinomycin D or blasticidin S. The fungus grew as well in hypocotyls treated with either inhibitor as it did in the near isogenic susceptible cultivar Harosoy, and production of the phytoalexin glyceollin was concomitantly reduced. The effects of actinomcyin D and blasticidin S were pronounced when the treatments were made at the time of fungus inoculation or within 2 to 4 hours after inoculation, but not after longer times. These results indicated that the normal expression of resistance to the fungus and production of glyceollin both required de novo messenger RNA and protein synthesis early after infection. Furthermore, actinomycin D and blasticidin S also were effective in suppressing resistance expression and glyceollin production in soybean hypocotyls when inoculated with various Phytophthora species that were normally nonpathogenic to the plants. This indicated that the mechanism of general resistance to these normally nonpathogenic fungi also involves de novo messenger RNA and protein synthesis and production of glyceollin.  相似文献   

11.
《Current biology : CB》2020,30(20):4103-4111.e6
  1. Download : Download high-res image (206KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
Very little is known about the molecular events triggering differentiated cells to re-enter the cell cycle. We have investigated the possible role of tyrosine phosphorylation in this process with hypocotyl explants of Arabidopsis thaliana. Phytohormone-stimulated cell cycle reactivation in hypocotyls was accompanied by tyrosine phosphorylation of several proteins. Such regulation of the tyrosine phosphorylation in these proteins was not observed in a callus-formation-deficient mutant, srd2, a result which suggests that the induction of tyrosine phosphorylation occurs as a specific event in callus cell proliferation. The promoter activity of cyclin-dependent kinase, CDKA;1, was also examined in phytohormone-stimulated hypocotyls. This study highlighted that protein tyrosine phosphorylation may play an important regulatory role in phytohormone-stimulated cell proliferation.  相似文献   

14.
Yang JS  Brown GN 《Plant physiology》1974,53(5):694-698
Total aminoacylation of glycine and leucine transfer RNAs was compared between chilled and nonchilled hypocotyls of 7-day-old soybean seedlings. Total charging was greater for both specific transfer RNAs from nonchilled sources. Isoaccepting transfer RNA species for glycine and leucine were fractionated using reverse phase column chromatography. Leucyltransfer RNAs were fractionated into six distinct fractions with relatively small shifts appearing in specific fractions between chilled and nonchilled sources. Glycyl-transfer RNAs were fractionated into two distinct fractions with major shifts appearing for both fractions between chilled and nonchilled sources.  相似文献   

15.
16.
PEGG  G. F. 《Annals of botany》1962,26(2):207-218
A new growth-inhibitor bioassay is described based on the extensionof 10 mm. hypocotyl segments cut from etiolated tomato seedlings.Hypocotyl segments including the terminal book showed a threefoldincrease in length when grown in deionized water for 48 hoursin total darkness on a slowly revolving clinostat. No increasein diameter occurred over this period. A brief exposure of the test material to white light resultedin a 30 per cent. reduction in growth in 48 hours. The tissuewas also sensitive to changes in hydrogen-ion concentrationin the medium and gave an optimal growth response at pH 7.0.Segments were tested in different media and maximal growth wasobtained with a nutrient solution beffered at pH 7.0 with potassiumphosphate/citric acid buffer. Growth in this medium was lessuniform than in deionized water. Concentrations of sucose upto 4 per cent. did not promote any significant increase in growth.Treatment with 0.1 and 1.0 per cent. glucose resulted in a smallbut significant reduction in growth.  相似文献   

17.
Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abcg2 abcg6 abcg20 triple mutant plants had increased permeability to tetrazolium red and decreased suberin content. The root system of triple mutant plants was more permeable to water and salts in a zone complementary to that affected by the Casparian strip. Suberin of mutant roots and seed coats had distorted lamellar structure and reduced proportions of aliphatic components. Root wax from the mutant was deficient in alkylhydroxycinnamate esters. These mutant plants also had few lateral roots and precocious secondary growth in primary roots. abcg1 abcg16 double mutants defective in the other two members of the clade had pollen with defects in the nexine layer of the tapetum-derived exine pollen wall and in the pollen-derived intine layer. Mutant pollen collapsed at the time of anther desiccation. These mutants reveal transport requirements for barrier synthesis as well as physiological and developmental consequences of barrier deficiency.  相似文献   

18.
19.
The possible involvement of active oxygen species and an apoplasticendopeptidase (EP) in the digestion of cell wall proteins wasstudied in extracellular fluid (EF) from hypocotyls of Phaseolusvulgaris at different stages of elongation. EF proteins underwentsignificant changes in polypeptide pattern during hypocotylgrowth, which were characterized by increases in 35, 39, 40and 50 kDa peptides and appearance of 61, 70 and 75 kDa peptidesat the exponential growth phase. EFs also contain endopeptidase[Gómez et al. (1994) Agriscientia 11:3]. Autolysis experimentswithout or with purified EP revealed that many cell wall polypeptidesare liable to degradation by the protease. Besides, EF polypeptidesincreased their susceptibility to EP during hypocotyl elongation.The 50 and 40 kDa polypeptydes were poorly degraded when extractedfrom hypocotyls in active growth, but greatly hydrolyzed whenextracted from fully elongated tissues, suggesting that in thecourse of growth proteins underwent modifications that renderedthem more prone to proteolytic attack. These modifications seemedto involve active oxygen species, as indicated by: (a) H2O2level rised when protein susceptibility to EP increased; and(b) EF proteins from growing hypocotyls (comparatively lesssusceptible to EP) treated with H2O2 were rapidly degraded bythe protease. (Received April 27, 1995; Accepted July 31, 1995)  相似文献   

20.
Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes.Pollen tubes play a crucial role in flowering plant reproduction. A pollen tube is the vegetative cell of the male gametophyte. It undergoes rapid polarized growth in order to transport the two nonmotile sperm cells to an ovule. This rapid growth is supported by the constant delivery of secretory vesicles to the pollen tube tip, where they fuse with the plasma membrane to enlarge the cell (Bove et al., 2008; Bou Daher and Geitmann, 2011; Chebli et al., 2013). This vesicle delivery is assumed to be driven by the rapid movement of organelles and cytosol throughout the cell, a process that is commonly referred to as cytoplasmic streaming (Shimmen, 2007). Cytoplasmic streaming in angiosperm pollen tubes forms a reverse fountain: organelles moving toward the tip travel along the cell membrane, while organelles moving away from the tip travel through the center of the tube (Heslop-Harrison and Heslop-Harrison, 1990; Derksen et al., 2002). Drug treatments revealed that pollen tube cytoplasmic streaming and tip growth depend on actin filaments (Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-Harrison, 1989; Parton et al., 2001; Vidali et al., 2001). Curiously, very low concentrations of actin polymerization inhibitors can prevent growth without completely stopping cytoplasmic streaming, indicating that cytoplasmic streaming is not sufficient for pollen tube growth (Vidali et al., 2001). At the same time, however, drug treatments have not been able to specifically inhibit cytoplasmic streaming; thus, it is unknown whether cytoplasmic streaming is necessary for pollen tube growth.Myosins are actin-based motor proteins that actively transport organelles throughout the cell and are responsible for cytoplasmic streaming in plants (Shimmen, 2007; Sparkes, 2011; Madison and Nebenführ, 2013). Myosins can be grouped into at least 30 different classes based on amino acid sequence similarity of the motor domain, of which only class VIII and class XI myosins are found in plants (Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Class VIII and class XI myosins have similar domain architecture. The N-terminal motor domain binds actin and hydrolyzes ATP (Tominaga et al., 2003) and is often preceded by an SH3-like (for sarcoma homology3) domain of unknown function. The neck domain, containing IQ (Ile-Gln) motifs, acts as a lever arm and is bound by calmodulin-like proteins that mediate calcium regulation of motor activity (Kinkema and Schiefelbein, 1994; Yokota et al., 1999; Tominaga et al., 2012). The coiled-coil domain facilitates dimerization (Li and Nebenführ, 2008), and the globular tail functions as the cargo-binding domain (Li and Nebenführ, 2007). Class VIII myosins also contain an N-terminal extension, MyTH8 (for myosin tail homology8; Mühlhausen and Kollmar, 2013), and class XI myosins contain a dilute domain in the C-terminal globular tail (Kinkema and Schiefelbein, 1994; Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Recently, Mühlhausen and Kollmar (2013) proposed a new nomenclature for plant myosins based on a comprehensive phylogenetic analysis of all known plant myosins that clearly identifies paralogs and makes interspecies comparisons easier (Madison and Nebenführ, 2013).The localization of class VIII myosins, as determined by immunolocalization and the expression of fluorescently labeled full-length or tail constructs, has implicated these myosins in cell-to-cell communication, cell division, and endocytosis in angiosperms and moss (Reichelt et al., 1999; Van Damme et al., 2004; Avisar et al., 2008; Golomb et al., 2008; Sattarzadeh et al., 2008; Yuan et al., 2011; Haraguchi et al., 2014; Wu and Bezanilla, 2014). On the other hand, class XI myosin mutants have been studied extensively in Arabidopsis (Arabidopsis thaliana), which revealed roles for class XI myosins in cell expansion and organelle motility (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Very few studies have examined the reproductive tissues of class XI myosin mutants. In rice (Oryza sativa), one myosin XI was shown to be required for normal pollen development under short-day conditions (Jiang et al., 2007). In Arabidopsis, class XI myosins are required for stigmatic papillae elongation, which is necessary for normal fertility (Ojangu et al., 2012). Even though pollen tubes of myosin XI mutants have not been examined, the tip growth of another tip-growing plant cell has been thoroughly examined in myosin mutants. Root hairs are tubular outgrowths of root epidermal cells that function to increase the surface area of the root for water and nutrient uptake. Two myosin XI mutants have shorter root hairs, of which the myo11e1 (xik; myosin XI K) mutation has been shown to be associated with a slower root hair growth rate and reduced actin dynamics compared with the wild type (Ojangu et al., 2007; Peremyslov et al., 2008; Park and Nebenführ, 2013). Higher order mutants have a further reduction in root hair growth and have altered actin organization (Prokhnevsky et al., 2008; Peremyslov et al., 2010). Disruption of actin organization was also observed in myosin XI mutants of the moss Physcomitrella patens (Vidali et al., 2010), where these motors appear to coordinate the formation of actin filaments in the apical dome of the tip-growing protonemal cells (Furt et al., 2013). Interestingly, organelle movements in P. patens are much slower than in angiosperms and do not seem to depend on myosin motors (Furt et al., 2012).The function of myosins in pollen tubes is currently not known, although it is generally assumed that they are responsible for the prominent cytoplasmic streaming observed in these cells by associating with organelle surfaces (Kohno and Shimmen, 1988; Shimmen, 2007). Myosin from lily (Lilium longiflorum) pollen tubes was isolated biochemically and shown to move actin filaments with a speed of about 8 µm s−1 (Yokota and Shimmen, 1994) in a calcium-dependent manner (Yokota et al., 1999). Antibodies against this myosin labeled small structures in both the tip region and along the shank (Yokota et al., 1995), consistent with the proposed role of this motor in moving secretory vesicles to the apex.In Arabidopsis, six of 13 myosin XI genes are highly expressed in pollen: Myo11A1 (XIA), Myo11A2 (XID), Myo11B1 (XIB), Myo11C1 (XIC), Myo11C2 (XIE), and Myo11D (XIJ; Peremyslov et al., 2011; Sparkes, 2011). The original gene names (Reddy and Day, 2001) are given in parentheses. Myo11D is the only short-tailed myosin XI in Arabidopsis (Mühlhausen and Kollmar, 2013) and lacks the typical myosin XI globular tail involved in cargo binding (Li and Nebenführ, 2007). The remaining genes have the same domain architecture as the conventional class XI myosins that have been shown to be involved in the elongation of trichomes, stigmatic papillae, and root hairs (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Therefore, we predicted that these five pollen-expressed, conventional class XI myosins are required for the rapid elongation of pollen tubes. In this study, we examined transfer DNA (T-DNA) insertion mutants of Myo11A1, Myo11A2, Myo11B1, Myo11C1, and Myo11C2 for defects in fertility and pollen tube growth. Organelle motility and actin organization were also examined in myo11c1 myo11c2 pollen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号